Search results

Search for "thin film" in Full Text gives 514 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • furnace, it can be seen that the DT spectrum remains unchanged during the first 33 min, although the temperature measured at the position related of sulfur, MoO3, and the substrate increased. This observation shows that no thin film was deposited during this period. The second section (section II
  • contrast, the features associated with MoS2 vanish. The decrease of the transmittance (the increase of DTS) over the low-energy range could be attributed to the increase of the scattering of the MoO3 thin film deposited on the quartz window. In order to understand the observed evolution of the DT
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • ; Introduction Increasing the dielectric constant of gate dielectrics for oxide thin-film transistors (TFTs) improves the performance of such devices. Challenges are in the processing of these high-k dielectrics and various approaches were tested over time. Among them, low-cost and innovative methods were
PDF
Album
Full Research Paper
Published 12 Feb 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • enables control of cell–surface interactions, which plays a major role in controlling the bioactivity of solid surfaces. Biocompatibility can be enhanced by coating the surface using various thin film deposition techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD) or atomic
  • the films was measured by a Bruker AXS D8 advance film diffractometer equipped with a LynxEye strip detector. The thin film diffractometer had a Göbel mirror and a Ge(220) four bounce monochromater for XRR measurements. X-ray photoelectron spectroscopy (XPS) was performed using a Thermo Scientific
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • -based devices fabricated using optimized growth strategies. Keywords: manganite; metal organic chemical vapour deposition (MOCVD); resistive switching; thin film; valence-change memory; Introduction Resistive switching (RS) denotes the phenomena occurring in capacitor-like heterostructures (metal
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • Thin Film Electronic Laboratory (PV-Lab), Rue de la Maladière 71b, 2002 Neuchâtel, Switzerland 10.3762/bjnano.10.31 Abstract Background: Elongated nanostructures, such as nanowires, have attracted significant attention for application in silicon-based solar cells. The high aspect ratio and
  • from the surface. Plasma-enhanced chemical vapour deposition (PECVD) was used for growing thin-film silicon and silicon alloys layers, to implement surface passivation and front surface field. Intrinsic hydrogenated amorphous silicon (a-Si(i):H), with a thickness equivalent to 30 nm on a flat substrate
  • Simulator” (HFSS) was employed [44], which allows for the modelling of thin-film optoelectronic devices with arbitrarily complex geometries [45][46][47][48][49][50][51][52]. To ensure accuracy, accurately measured optical properties (refractive index n and extinction coefficient κ) of each material of the
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • energy density is approximately three times larger than that of a thin-film lithium ion battery (1–12 mW h/cm3, 4 V/500 μAh) [52] and far exceeds that of a MnO2-Ni(OH)2/AB//active carbon asymmetric supercapacitor (3.62 mWh/cm3 at 11 mW/cm3) [39] and a NiCo-LDH//AC asymmetric capacitor (7.4 mWh/cm3 at 103
PDF
Album
Full Research Paper
Published 25 Jan 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • Rekha Bai Dinesh K. Pandya Sujeet Chaudhary Veer Dhaka Vladislav Khayrudinov Jori Lemettinen Christoffer Kauppinen Harri Lipsanen Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi 110016, India Department of Electronics and Nanoengineering, Micronova, Aalto
PDF
Album
Full Research Paper
Published 24 Jan 2019

Raman study of flash-lamp annealed aqueous Cu2ZnSnS4 nanocrystals

  • Yevhenii Havryliuk,
  • Oleksandr Selyshchev,
  • Mykhailo Valakh,
  • Alexandra Raevskaya,
  • Oleksandr Stroyuk,
  • Constance Schmidt,
  • Volodymyr Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2019, 10, 222–227, doi:10.3762/bjnano.10.20

Graphical Abstract
  • as stabilizers. We establish the range of FLA conditions providing an efficient re-crystallization in the thin film of NCs, while preserving their kesterite structure and improving their crystallinity remarkably. The formation of secondary phases at higher FLA power densities, as well as the
  • ]. Here, we focus on the effect of flash-lamp annealing on the structural evolution of CZTS films, as probed by Raman spectroscopy. The FLA setup, based on a xenon lamp emitting in the range of 300 to 800 nm, was customized by Dresden Thin Film (DTF) Technology GmbH [33] in a glove box system with
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • Jako S. Eensalu Atanas Katerski Erki Karber Ilona Oja Acik Arvo Mere Malle Krunks Laboratory of Thin Film Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia 10.3762/bjnano.10.18 Abstract Antimony
  • thickness of 100 nm derived from SEM images (Table 3). The absorption coefficient α was determined as where d is the layer thickness, R is the total reflectance, included to compensate for thin film interference, and T is the total transmittance. The band gap of Sb2S3 layers was determined by plotting (αhν
  • )1/r vs hν, where h is the Planck constant, ν is the frequency and r = 1/2 is the exponent corresponding to the assumed direct optical transition [57]. Extrapolating the linear region of this curve to the hν-axis yields the optical band gap. Thin film interference could not be completely removed by
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • Sandra Haschke Dmitrii Pankin Vladimir Mikhailovskii Maissa K. S. Barr Adriana Both-Engel Alina Manshina Julien Bachmann Friedrich-Alexander University Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Chair of Chemistry of thin film materials, Egerlandstrasse 3a, 91058 Erlangen, Germany
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • beyond the scope of solar cells. Katherine Atamanuk and co-workers impressively demonstrate that SPM methods can also be used to perform tomography [7]. They apply photoconducting scanning force microscopy for mapping the open-circuit voltage of cadmium telluride (CdTe) polycrystalline thin film solar
PDF
Editorial
Published 10 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • sensor [6]. In order to check if the deposition method (drop-coating thick film or airbrushing thin film) has an influence on the sensor behavior, an additional sensor using CNTs corresponding to sample B was prepared by air brushing. Differences in morphologies between the two approaches followed for
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • -shaped micropillars detaches via a local thin-film peeling mechanism, multiple peeling fronts are present throughout the micropattern [14]. This splitting-up of the peeling front in multiple smaller fronts results in a drastic increase in peeling line length, and therefore in high pull-off and friction
  • terminal-layer geometries on hard substrates, are not involved on the tested PDMS-PVA configurations. As Heepe et al. already reasoned for a (simplified) representation of a discoidal adhesive element [6], the advantageous effect of a thin film micropattern on pull-off force is lost when the substrate is
  • ]. This deformation effect of the terminal layer on pull-off force is supported by the findings by Shahsavan et al., who reported that with thin film-terminated micropillars higher compliance and pull-off forces can be realized when the terminal layer has viscoelastic material properties [41]. For
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Contact splitting in dry adhesion and friction: reducing the influence of roughness

  • Jae-Kang Kim and
  • Michael Varenberg

Beilstein J. Nanotechnol. 2019, 10, 1–8, doi:10.3762/bjnano.10.1

Graphical Abstract
  • been performed so far for thin-film-based adhesives. To this end, we report on the behavior of original and split, wall-shaped adhesive microstructures on different surfaces ranging across four orders of magnitude in roughness. Our results clearly demonstrate that the adhesion- and friction-driven
  • adhesion; surfaces; tribology; Introduction Biological attachment systems based on thin-film adhesion have drawn significant interest during the last two decades because of their ability to operate on nearly any surface, their efficient control of detachment and their high resistance to contamination [1
  • biological thin-film-based contact elements [7][8][9][10][11][12][13][14]. These artificial structures perform reasonably well on smooth substrates, which makes them suitable for industrial applications such as silicon wafer or display panel handling [15][16][17]. Because the ultimate goal of mimicking
PDF
Album
Full Research Paper
Published 02 Jan 2019

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

  • Franziska Ringleb,
  • Stefan Andree,
  • Berit Heidmann,
  • Jörn Bonse,
  • Katharina Eylers,
  • Owen Ernst,
  • Torsten Boeck,
  • Martina Schmid and
  • Jörg Krüger

Beilstein J. Nanotechnol. 2018, 9, 3025–3038, doi:10.3762/bjnano.9.281

Graphical Abstract
  • fabrication methods for microabsorbers. In thin-film photovoltaics, Cu(In,Ga)Se2 (CIGSe) solar cells with an efficiency record of 22.9% for planar cells [2] and 19.2% for sub-modules [3] are among the leading technologies. Figure 1 shows the structure of a planar CIGSe solar cell representing the current
PDF
Album
Review
Published 12 Dec 2018

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • [54]. Shells Alumina thin layers: atomic layer deposition (ALD). The ALD method was used to grow Al2O3 layers on the nanoparticles [55][56]. ALD is a thin film deposition technique where the film thickness is precisely controlled at the atomic level [57]. The deposition is based on sequential chemical
  • ) and stirred with a magnetic stirrer until no particulate was visible (around 30 min). The spinning program used for thin film deposition was: a) 100 rpm for 15 s, b) 500 rpm for 15 s, and c) 2000 rpm for 60 s, all with a ramp of 2000 rpm. Silicon dioxide thin films: plasma sputter deposition (PSD
PDF
Album
Full Research Paper
Published 07 Dec 2018

Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

  • Alexander Gaul,
  • Daniel Emmrich,
  • Timo Ueltzhöffer,
  • Henning Huckfeldt,
  • Hatice Doğanay,
  • Johanna Hackl,
  • Muhammad Imtiaz Khan,
  • Daniel M. Gottlob,
  • Gregor Hartmann,
  • André Beyer,
  • Dennis Holzinger,
  • Slavomír Nemšák,
  • Claus M. Schneider,
  • Armin Gölzhäuser,
  • Günter Reiss and
  • Arno Ehresmann

Beilstein J. Nanotechnol. 2018, 9, 2968–2979, doi:10.3762/bjnano.9.276

Graphical Abstract
  • with a spatial resolution significantly smaller than the domain wall width. Results: We demonstrate the application of a helium ion microscope with a beam diameter of 8 nm as a mask-less method for local domain patterning of magnetic thin-film systems. For a prototypical in-plane exchange-bias system
  • engineering in an in-plane exchange-bias thin film as a prototypical system. For two-dimensional domains the limit depends on the domain geometry. The relative orientation between domain wall and anisotropy axes is a crucial parameter and therefore influences the achievable minimum domain size dramatically
  • . Keywords: exchange bias; helium ion microscopy; ion bombardment induced magnetic patterning; magnetic domains; magnetic nanostructures; Introduction Engineered magnetic domains with deliberately set magnetic properties and designed shapes in thin-film systems have proven to be useful in memory [1][2] and
PDF
Album
Full Research Paper
Published 03 Dec 2018

Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation

  • Claudio H. B. Silva,
  • Maria Iliut,
  • Christopher Muryn,
  • Christian Berger,
  • Zachary Coldrick,
  • Vera R. L. Constantino,
  • Marcia L. A. Temperini and
  • Aravind Vijayaraghavan

Beilstein J. Nanotechnol. 2018, 9, 2936–2946, doi:10.3762/bjnano.9.272

Graphical Abstract
  • ][49][65]. Although this result does not stimulate studies focusing on the application of rGO/PANI/hexNb in energy-storage devices, the thin film obtained by dropcasting has potential to be explored for other purposes since the amount of charge carriers is increased in the ternary nanocomposite
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

Time-resolved universal temperature measurements using NaYF4:Er3+,Yb3+ upconverting nanoparticles in an electrospray jet

  • Kristina Shrestha,
  • Arwa A. Alaulamie,
  • Ali Rafiei Miandashti and
  • Hugh H. Richardson

Beilstein J. Nanotechnol. 2018, 9, 2916–2924, doi:10.3762/bjnano.9.270

Graphical Abstract
  • scanning electron microscopy (SEM) image of a thin film of NaYF4:Er3+,Yb3+ UCNPs drop-cast on a glass coverslip is shown in Figure 1. The UCNPs are relatively uniform in size and shape with an average diameter around 300 nm and a height of around 80 nm. The height (thickness) of the UCNPs is determined by
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • Electron beam induced deposition. We begin with a brief review of EBID, which addresses the fabrication of dots and lines in SEM, TEM and STM on bulk and thin film substrates, as well as sub-10 nm FEBIP for specialised applications. Since the darkening due to decomposition of surface contaminants was first
  • combined with CVD. As another example, 5 nm GaN quantum dots were deposited by Crozier [86] by EBID from a specially tailored precursor resulting in high-quality uniform deposits on a thin film of Si/SiO2. Shimojo [87] demonstrated the deposition of self-standing nanorods, 10 nm in diameter, by electrons
  • profile as a technique to overcome this limit on both thin film and bulk substrates. It is well known that, during EBIE, the competing deposition due to EBID from hydrocarbons in the chamber influences the resolution as well as the etch rate. Upon changing the electron flux, an abrupt transition between
PDF
Album
Review
Published 14 Nov 2018

Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices

  • Zhenyin Hai,
  • Mohammad Karbalaei Akbari,
  • Zihan Wei,
  • Danfeng Cui,
  • Chenyang Xue,
  • Hongyan Xu,
  • Philippe M. Heynderickx,
  • Francis Verpoort and
  • Serge Zhuiykov

Beilstein J. Nanotechnol. 2018, 9, 2845–2854, doi:10.3762/bjnano.9.265

Graphical Abstract
  • support the performance degradation. Specifically, the nanostructured flower-like balls and the nanosheets in the samples synthesized at 80 °C seem to be glued together in Figure 7a, forming a thin film-like structure as indicated in the inset of Figure 7a, which could be a result of strong reaction
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2018

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • Daiming Liu Qingkang Wang Qing Wang College of Physics and Lab of New Fibre Materials and Modern Textile Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, P.R. China Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic
  • light seriously restricts the photoelectric conversion efficiency of hydrogenated amorphous silicon (a-Si:H) thin film solar cells. Spectral upconversion is of great significance in reducing the wastage. Herein, the upconverting compound NaYF4:Yb3+/Er3+ was synthesized via a hydrothermal method. SEM and
  • cells, the hydrogenated amorphous silicon (a-Si:H) thin-film solar cell is one of the most promising candidates due to its high inherent absorption coefficient, short charge-carrier diffusion length and low production cost [1]. Films of a-Si:H with a wide bandgap of ca. 1.75 eV have a high absorption in
PDF
Album
Full Research Paper
Published 31 Oct 2018

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • deposited onto the GCE surface to obtain a stable thin film after drying. Chitosan films containing either diaphorase (DI) or glucose dehydrogenase (GDH) and DI were prepared by mixing 10 µL of 0.5 wt % chitosan solution with 5 µL of DI (5 mg·mL−1) or 15 µL of 0.5 wt % chitosan with 10 µL of GDH (1000 U·mL
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • substrates beaded with ZnO nanoparticles [25]. This effect was demonstrated at 0.780 µm with femtosecond pulses. Ahmad et al. employed ZnO nanoparticles in a polymer thin film as a SA for an Er fiber laser. The absorption saturation experiment performed at 1.560 µm revealed a saturation intensity as low as
  • compared to the SWCNT-SAs, while the latter are less attractive since they are deposited in the form of a polymer thin film. For the Tm laser, the best output characteristics are again achieved with the SWCNT-SA. The PQS performance of the ZnO NRs is better than other 2D materials (graphene-SA with a
PDF
Album
Full Research Paper
Published 23 Oct 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • .9.252 Abstract Molybdenum (Mo) is the most commonly used material as back contact in thin-film solar cells. Adhesion of Mo film to soda–lime glass (SLG) substrate is crucial to the performance of solar cells. In this study, an optimized bilayer structure made of a thin layer of Mo on an ultra-thin
  • chromium (Cr) adhesion layer is used as the back contact for a copper zinc tin sulfide (CZTS) thin-film solar cell on a SLG substrate. DC magnetron sputtering is used for deposition of Mo and Cr films. The conductivity of Mo/Cr bilayer films, their microstructure and surface morphology are studied at
  • the back contact thickness to 600 nm. That is two thirds to half of the thickness that is currently being used for bilayer and single layer back contact for thin-film solar cells. We demonstrate the excellent properties of Mo/Cr bilayer as back contact of a CZTS solar cell. Keywords: back contact
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018
Other Beilstein-Institut Open Science Activities