Search results

Search for "zeta potential" in Full Text gives 231 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

An efficient recyclable magnetic material for the selective removal of organic pollutants

  • Clément Monteil,
  • Nathalie Bar,
  • Agnès Bee and
  • Didier Villemin

Beilstein J. Nanotechnol. 2016, 7, 1447–1453, doi:10.3762/bjnano.7.136

Graphical Abstract
  • Analyst 100 spectrophotometer. The microwave used was a Prolabo Synthewave. A Varian SpectrAA 55 AAS was used to detect potential traces of iron in the supernatants after collecting nanoparticles. Zeta potential measurements were determined by DLS analysis using a Malvern Zetasizer nanoZS model
  • synthesis, the coating of maghemite and a characterization of the physicochemical properties of the material [20][22]. As illustrated in Figure 1, PEIP can be customized to contain more or less phosphonated groups, by varying the percentage of amines modified (P%). Between pH 3 and 10, the zeta potential is
  • positive but decreases with the percentage of phosphonation (see Figure S2 in Supporting Information File 1). After the point of zero charge (PZC), the phosphonates induce a negative charge, whereas non-phosphonated PEI-NP display a zeta potential of 0 mV, making PEI-NP unstable at basic pH. The efficiency
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2016

Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

  • Silvia Varela-Aramburu,
  • Richard Wirth,
  • Chian-Hui Lai,
  • Guillermo Orts-Gil and
  • Peter H. Seeberger

Beilstein J. Nanotechnol. 2016, 7, 1278–1283, doi:10.3762/bjnano.7.118

Graphical Abstract
  • indicated by the zeta potential (Figure S7, Supporting Information File 1). To better understand the role of the stabilizing agent used to prepare Glc-NCs, XPS was employed (Figure S8, Supporting Information File 1). The gold core of the nanoclusters (confirmed by the Au 4f scan) is stabilized through an Au
PDF
Album
Supp Info
Letter
Published 08 Sep 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
PDF
Album
Full Research Paper
Published 12 Aug 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • organic functional groups of the L3 ligand. In order to assess the charge of species, zeta potential measurements were performed and turned out to be a very informative tool for covering the nanotubes with polyelectrolytes, e.g., a step-by-step analysis gave a slightly negative zeta potential SPIO/oMWCNT
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • obtained by laser ablation [32]. In order to study the long-term colloidal stability and the electrical characteristics of the NP surface, the zeta potential was measured. The obtained values are reported in Table 1. Apart from the AgNPsLiClps sample, all samples exhibited a bimodal distribution of the
  • zeta potential. In all cases, the zeta potential is strongly negative, indicating excellent long-term stability of the NPs, as already assessed by Giorgetti et al. [32]. Furthermore, as expected, the adsorption of chloride ions shifts the zeta potential of the samples obtained in LiCl solution towards
  • more negative values. The negative zeta potential of the colloids obtained in water is due to the adsorption of hydroxide anions from the aqueous medium, whereas for the colloids obtained in LiCl solution it is due to the preferential adsorption of chloride anions on the silver surface [35]. We have
PDF
Album
Full Research Paper
Published 18 Mar 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • bars are 100 nm. Zeta-potential (ζ) values of differently coated silver (AgNPs) and superparamagnetic iron oxide nanoparticles (SPIONs) in ultrapure water (UW), biological medium (BM) and biological medium supplemented with 0.1% bovine serum albumin (BMP) after 1 h at 25 °C. Coating agents: trisodium
PDF
Album
Full Research Paper
Published 15 Feb 2016

Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

  • Nina J. Blumenstein,
  • Caroline G. Hofmeister,
  • Peter Lindemann,
  • Cheng Huang,
  • Johannes Baier,
  • Andreas Leineweber,
  • Stefan Walheim,
  • Christof Wöll,
  • Thomas Schimmel and
  • Joachim Bill

Beilstein J. Nanotechnol. 2016, 7, 102–110, doi:10.3762/bjnano.7.12

Graphical Abstract
  • static contact angle of Milli-Q water on the modified and unmodified samples were measured on a Contact Angle Measurement System G10 from Kruess. The results are an average of at least five measurements. Zeta-potential measurements Measurements of the ζ-potential were performed on a SurPASS
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2016

pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

  • Manuel Häuser,
  • Klaus Langer and
  • Monika Schönhoff

Beilstein J. Nanotechnol. 2015, 6, 2504–2512, doi:10.3762/bjnano.6.260

Graphical Abstract
  • ), and zeta potential. PLGA nanoparticles were (249 ± 4) nm in diameter, showing a narrow size distribution (PDI 0.04 ± 0.02) and a zeta potential of (−53 ± 1) mV. After adsorption of the initial layer of polyethylenimine (PEI), the particles were washed as described in the Experimental section. The
  • obtained PLGA–PEI nanoparticles showed only a minor increase in particle diameter (266 ± 4) nm and no significant increase in PDI (0.07 ± 0.03), which indicates no aggregation of nanoparticles taking place during adsorption or washing. The zeta potential was inverted to a positive value of (+35 ± 4) mV
  • (degree of ionization ≈30%), and pH 7 (degree of ionization ≈ 80%), respectively. PAA adsorption was successful in all cases, which can be concluded from the inversion of the zeta potential from positive to negative values (Table 1). As shown in Table 1, an obvious trend comparing the zeta potential after
PDF
Album
Full Research Paper
Published 30 Dec 2015

Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

  • Sanda Boca,
  • Cosmin Leordean,
  • Simion Astilean and
  • Cosmin Farcau

Beilstein J. Nanotechnol. 2015, 6, 2498–2503, doi:10.3762/bjnano.6.259

Graphical Abstract
  • : for FA-capped nanoparticles (21 nm) the obtained hydrodynamic diameter was larger than for bare colloidal nanoparticles (18 nm) (Figure S2, Supporting Information File 1). Zeta potential measurements of the concentrated suspension show an average value of ζ = −32 mV, which prove a good electrostatic
  • . Particle morphology was determined by transmission electron microscopy (TEM) using a JEOL JEM1010 microscope. Zeta potential and hydrodynamic diameter of the particles were determined by using a Zetasizer Nano-ZS90 (Malvern Instruments). SERS spectra were recorded with a confocal Raman microscope (Witec
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2015

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • of AgNP species is referred to as the third species, and it is central to the study of the bactericidal and ultrastructural effects of AgNPs against methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA. By acquiring zeta potential measurements before and after the filtration of Ag colloids
  • spectroscopy (EDS), along with calculating the MIC50 inhibitions of AgNPs on MRSA and MSSA as well as zeta potential measurements to investigate the charged-particle nature of silver nanoparticles. The study revealed that our 1 nm average sized AgNPs induced pore formation, cell wall thinning, cell content
  • ). The measured distribution was log–normal distributed with a size distribution range of 0.5 to 24 nm and average size of 1 nm (Figure 1b). Zeta potential measurements The zeta potential value increased with time from −2.9 mV to +13.4 mV over a 120 h time period (Figure 2). This shift to positive zeta
PDF
Album
Full Research Paper
Published 15 Dec 2015

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • ionic surfactants can reduce the zeta potential of Ag NPs from −20 to −50 mV, which is favorable for stabilization. They concluded that non-ionic surfactants can form a layer with inhibition function to prevent the formation of other nuclei and consequently lead to monodisperse NPs [100]. Lu et al
  • showed SPR centered at 404 nm with average particle size measured to fall within the range of 13 nm. Their FTIR study admitted the role of sulfate groups of polysaccharide in reduction of AgNO3. Also, the zeta potential measurement (−35.05 mV) confirmed the capping of anionic polysaccharide on the
  • , 6, 24 and 48 h, respectively. According to the measured zeta potential of 54.5 mV, they concluded that the synthesized Ag NPs had acceptable stability [4]. In another study, they studied the antibacterial activity of different sizes of Ag NPs against two different bacteria and observed that Ag NPs
PDF
Album
Review
Published 10 Dec 2015

Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

  • Joseba Irigoyen,
  • Nikolaos Politakos,
  • Eleftheria Diamanti,
  • Elena Rojas,
  • Marco Marradi,
  • Raquel Ledezma,
  • Layza Arizmendi,
  • J. Alberto Rodríguez,
  • Ronald F. Ziolo and
  • Sergio E. Moya

Beilstein J. Nanotechnol. 2015, 6, 2310–2318, doi:10.3762/bjnano.6.237

Graphical Abstract
  • polyallylamine hydrochloride (PAH) and polystyrenesulfonate sodium salt (PSS). Capsules where characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and
PDF
Album
Full Research Paper
Published 04 Dec 2015

Electroviscous effect on fluid drag in a microchannel with large zeta potential

  • Dalei Jing and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2015, 6, 2207–2216, doi:10.3762/bjnano.6.226

Graphical Abstract
  • . Nevertheless, the study on the combined effect of EDL with large zeta potential up to several hundred millivolts and surface charge depenedent-slip on the micro/nano flow is still needed. In this paper, the nonlinear Poisson–Boltzmann equation for electrical potential and ion distribution in non-overlapping
  • potential on the pressure-driven flow in a microchannel with no-slip and charge-dependent slip conditions. The results show that the EDL leads to an increase in the fluid drag, but that slip can reduce the fluid drag. When the zeta potential is large enough, the electroviscous effect disappears for flow in
  • the microchannel under a no-slip condition. However, the retardation of EDL on the flow and the enhancement of slip on the flow counteract each other under a slip condition. The underlying mechanisms of the effect of EDL with large zeta potential on fluid drag are the high net ionic concentration near
PDF
Album
Full Research Paper
Published 24 Nov 2015

An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology

  • Richard L. Marchese Robinson,
  • Mark T. D. Cronin,
  • Andrea-Nicole Richarz and
  • Robert Rallo

Beilstein J. Nanotechnol. 2015, 6, 1978–1999, doi:10.3762/bjnano.6.202

Graphical Abstract
  • information about chemical composition as well as a range of other measured properties such as size distribution statistics and zeta potential, to name but two [12]. Being able to relate these data allows for the development of predictive models based on quantitative structure–activity relationships (QSARs
  • identifier (“Material Source Name”) is reported in an appropriate “Factor Value [factor name]” column (e.g., “Factor Value [nanomaterial]). If the assay measures nanomaterial physicochemical parameters (e.g., size by dynamic light scattering, zeta potential), the originally sourced nanomaterial sample is
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2015

Temperature-dependent breakdown of hydrogen peroxide-treated ZnO and TiO2 nanoparticle agglomerates

  • Sinan Sabuncu and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 1897–1903, doi:10.3762/bjnano.6.193

Graphical Abstract
  • hot plate before analysis. DLS analysis of the hydroxylated ZnO and TiO2 NPs The hydrodynamic radius and zeta potential of the NPs in suspension were monitored using a Zetasizer NanoZS (Malvern, UK) instrument equipped with a 4 mW HeNe laser (633 nm). The hydroxylated ZnO or TiO2 NPs were added to
  • the temperature. The suspension was placed into a folded capillary cell for zeta potential measurement and the zeta potential of the NPs was measured at 30 °C. All experiments were performed at least three times. Results and Discussion Representative TEM images of the ZnO and TiO2 NPs are provided in
  • Figure 1. As can be seen, both types of NPs are composed of NPs with a range of sizes. The average size of the ZnO and TiO2 NPs were 98 and 18 nm, respectively. Change in zeta potential after NP hydroxylation The zeta potential (ζ) of the NPs provides information about the surface charge of the particle
PDF
Album
Full Research Paper
Published 14 Sep 2015

NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials

  • Katre Juganson,
  • Angela Ivask,
  • Irina Blinova,
  • Monika Mortimer and
  • Anne Kahru

Beilstein J. Nanotechnol. 2015, 6, 1788–1804, doi:10.3762/bjnano.6.183

Graphical Abstract
  • , primary size, possible impurities, surface area and other observations, and the test environment-specific characteristics are: media, size, dissolution and zeta potential (Supporting Information File 2). Figure 4 illustrates the distribution of the data on ENM characteristics in NanoE-Tox database
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2015

Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

  • Nina J. Blumenstein,
  • Jonathan Berson,
  • Stefan Walheim,
  • Petia Atanasova,
  • Johannes Baier,
  • Joachim Bill and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1763–1768, doi:10.3762/bjnano.6.180

Graphical Abstract
  • (data not shown). The investigation of the suspensions from the reaction solution by zeta potential measurements revealed that the particles possess a potential of +22.0 mV at pH 6.7 [26]. Since the pH of the reaction solution is around 5.3, the formed NPs are positively charged (Figure 2). The zeta
  • potential of the amino-functionalized SAM is charged slightly positive during the reaction [28][29] due to protonation of the amino groups (–NH3+) at this pH. Additionally, a Stern layer is present, which is formed by negatively charged counterions [29][30]. The particles in solution can interact with these
PDF
Album
Full Research Paper
Published 20 Aug 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • molecules in in vivo and in vitro microenvironments. Hence, the surface charge of the nanoparticles was investigated by means of zeta potential analysis. As shown in Table 1, the uncoated Fe3O4 nanoparticle surface charge was about −42.7, which changed to +41.5 and +23.6 after coating with TMC and chitosan
  • onto the polymer/Fe3O4 nanoparticles also influenced the surface charge of the resulting nanoparticles. The results of the zeta potential analysis in Table 1 show that the surface charge of the final products are −31.6 for Au/TMC/Fe3O4 nanoparticles and −6.2 for Au/chitosan/Fe3O4 nanoparticles due to
  • effect of different concentrations of Au/TMC/Fe3O4 nanoparticles on cell viability as assessed by MTT assay. Size evaluation via TEM, XRD, DLS and zeta potential analysis of the synthesized nanoparticles. Acknowledgements This research was supported by the Endocrinology and Metabolism Research Institute
PDF
Album
Full Research Paper
Published 03 Aug 2015

The eNanoMapper database for nanomaterial safety information

  • Nina Jeliazkova,
  • Charalampos Chomenidis,
  • Philip Doganis,
  • Bengt Fadeel,
  • Roland Grafström,
  • Barry Hardy,
  • Janna Hastings,
  • Markus Hegi,
  • Vedrin Jeliazkov,
  • Nikolay Kochev,
  • Pekka Kohonen,
  • Cristian R. Munteanu,
  • Haralambos Sarimveis,
  • Bart Smeets,
  • Pantelis Sopasakis,
  • Georgia Tsiliki,
  • David Vorgrimmler and
  • Egon Willighagen

Beilstein J. Nanotechnol. 2015, 6, 1609–1634, doi:10.3762/bjnano.6.165

Graphical Abstract
  • similarity and substructure search enhances the data exploration capabilities of the system (e.g., finding nanoparticles with similar coatings). The data exploration is also supported by REST API calls retrieving data summaries (e.g., number of zeta potential entries) and endpoint prefix queries, allowing
  • sizes and visualizes it with d3.js, resulting in Figure 17. A variation of the second example shows a scatter plot of the zeta potential values against nanomaterial sizes. Here, the same approach is used and the bits of information are aggregated in a global variable. The results are shown in Figure 18
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2015

Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

  • Zitao Zhou,
  • Jino Son,
  • Bryan Harper,
  • Zheng Zhou and
  • Stacey Harper

Beilstein J. Nanotechnol. 2015, 6, 1568–1579, doi:10.3762/bjnano.6.160

Graphical Abstract
  • membrane proteins [37]. Although zeta potential is known to be crucial to biological response [38]; it’s dependent on the environment in which it is measured and thus is not an intrinsic feature of the NP and thus was omitted from the model. Following PCA, the ordinary kriging (OK) method was applied to
  • with biological membranes may drive toxicity more than the size of the particle itself. NP agglomeration in aquatic environments often occurs and can be influenced by physicochemical properties of the particle surface and environmental factors affecting the zeta potential [27][45][46]. Therefore, it is
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2015

Using natural language processing techniques to inform research on nanotechnology

  • Nastassja A. Lewinski and
  • Bridget T. McInnes

Beilstein J. Nanotechnol. 2015, 6, 1439–1449, doi:10.3762/bjnano.6.149

Graphical Abstract
  • the numeric values and dendrimer property terms. The entities associated with PAMAM were based on the NanoParticle Ontology and included: (1) hydrodynamic diameter, (2) particle diameter, (3) molecular weight, (4) zeta potential, (5) cytotoxicity, (6) IC50, (7) cell viability, (8) encapsulation
PDF
Review
Published 01 Jul 2015

Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

  • Klara Altintoprak,
  • Axel Seidenstücker,
  • Alexander Welle,
  • Sabine Eiben,
  • Petia Atanasova,
  • Nina Stitz,
  • Alfred Plettl,
  • Joachim Bill,
  • Hartmut Gliemann,
  • Holger Jeske,
  • Dirk Rothenstein,
  • Fania Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2015, 6, 1399–1412, doi:10.3762/bjnano.6.145

Graphical Abstract
  • applied: both samples did not migrate into the gel phase to a sufficient extent. Zeta potential measurement The zeta potentials (ZPs) of TMV–Lys nanorods and their derivatives were determined using a Malvern NanoSizer at a virus particle concentration of 0.5 mg/mL in ultrapure water (ddH2O) and in 30 mM
  • buffer (10 mM SPP pH 7.2, 0.1% (w/v) bromophenol blue, 10% glycerol) were applied per lane. TMV bands were stained with Coomassie Brilliant Blue R250. Zeta potential determination and charge calculation The zeta potential was measured with a Malvern Zetasizer Nano ZS (Malvern Instruments, Worcestershire
  • , UK) using disposable folded cuvettes. The Smoluchowski approximation was used according to instrument settings to convert the electrophoretic mobility to a zeta potential. The experiments consisted of 30 runs per measurement. All experiments were conducted in triplicate. The zeta potential was
PDF
Album
Full Research Paper
Published 25 Jun 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • cell growth, cell cycle arrest and morphological changes. Results Nanoparticle physicochemical properties PLGA NPs were prepared by a single emulsion solvent evaporation method and stabilized with Pluronic®F127. The obtained results for mean the diameter, polydispersity index (PDI) and zeta potential
  • for the unloaded PLGA NPs are shown in Table 1. According to the literature, the PLGA NPs size is found to be in the range of 100 to 250 nm [20]. The prepared unloaded NPs are within the expected range, exhibiting a mean diameter of 172 ± 4 nm, and presenting a zeta potential value of −38 mV: negative
  • , as expected, due to their carboxylic end groups (Table 1). The single emulsion solvent evaporation method allowed the encapsulation of vitamin D3 in the PLGA NPs. The obtained results for the mean diameter, PDI, zeta potential, encapsulation efficiency and loading capacity values for the PLGA NPs
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles

  • Simon Ristig,
  • Svitlana Chernousova,
  • Wolfgang Meyer-Zaika and
  • Matthias Epple

Beilstein J. Nanotechnol. 2015, 6, 1212–1220, doi:10.3762/bjnano.6.124

Graphical Abstract
  • electrostatic stability of the particles. Note that the variation of the zeta potential is probably within the range of the experimental noise. Table 1shows all size-related data of the alloyed nanoparticles. The experimental molar compositions of the nanoparticles were examined by AAS. The silver and gold
  • were performed at (A) 5 h, (B) 24 h, (C) and 72 h after the nanoparticle addition. The dotted lines indicate the viability of the control (untreated cells). Results of nanoparticle diameters determined from TEM, DCS and DLS (by number) and zeta potential measurements of PVP-functionalized Ag/Au
PDF
Album
Full Research Paper
Published 27 May 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • the ε-amino group of lysine with succinic anhydride, Treuel et al. [4], turned these positively charged groups into negatively charged carboxylate functions, obtaining succinylated HSA (HSAsuc). In addition to the surface charge distribution, this succinylation changed the overall zeta potential of
  • aminated HSA molecule (HSAam). This amination expectedly decreased the magnitude of the zeta potential of native HSA, (−10.5 ± 1.3) mV, to (−6.1 ± 0.4) mV (in PBS at pH 7.4). DLS measurements confirmed that the protein size remained essentially unchanged after all chemical modifications and the overall
PDF
Album
Review
Published 30 Mar 2015
Other Beilstein-Institut Open Science Activities