Search results

Search for "Anchoring" in Full Text gives 127 result(s) in Beilstein Journal of Nanotechnology.

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • tolerance against poisoning in comparison to those supported on carbon blacks and nonmodified catalyst supports. This could be due to improved Pt dispersion owing to a higher amount of functional anchoring sites of the catalyst supports and their high surface area, as well as from a good electrical contact
  • compared to CNT/GC, as deduced from the double-layer current. The secondary CNTs provide a larger number of anchoring sites (e.g., surface functional groups or junction between primary CNTs and secondary CNTs) to form a larger numbers of Pt nuclei during electrodeposition. As a consequence, the Pt
  • oxygen functional groups as anchoring sites. Afterwards, Fe nanoparticles were grown on the oxidized GC by double pulse deposition [57] in 0.005 M FeSO4·7H2O (≥99.5%, Roth, Germany) and 0.5 M MgSO4·7H2O (pure, Roth, Germany) aqueous solution. MgSO4 simply serves as a conducting electrolyte to avoid high
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Magnetic segregation effect in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov,
  • Alexander N. Zakhlevnykh and
  • Dmitriy V. Makarov

Beilstein J. Nanotechnol. 2019, 10, 1464–1474, doi:10.3762/bjnano.10.145

Graphical Abstract
  • study the orientational transitions in a suspension of carbon nanotubes in a nematic liquid crystal induced by an external magnetic field. The case of a finite orientational anchoring of liquid crystal molecules at the surface of doped carbon nanotubes is considered. It is shown that in a magnetic field
  • feature of CNTs is their strong diamagnetism ( ≈ 10−5 to 10−4) [18][19][20][21][22][23]. In the majority of experimental publications [7][16][24][25][26] the planar type of anchoring between the nanotubes and the LC matrix is noted. For CNT suspensions based on nematic liquid crystals (NLCs) with positive
  • the framework of the continuum theory [39], the directions of the preferred orientation of the NLC molecules and the CNTs are determined using the unit vectors n and m, respectively. The anchoring of NLC molecules on the surface of the plates will be considered absolutely rigid and planar, so the
PDF
Album
Full Research Paper
Published 22 Jul 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • facilitate the growth of the semiconductor NPs. This happens in the same way as that occurring at the external surface of the fibrous clay minerals with the participation of surface Si–OH groups for anchoring the TiO2 and ZnO NPs. The assembly of TiO2 and other types of semiconducting NPs takes place very
PDF
Album
Review
Published 31 May 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • the molecules on NiO(001). The emergence of numerous clusters is related to the presence of various defects on the surface that act as anchoring sites for the dyes. Concentrating on the islands and measuring their heights (250–300 pm), we can conclude that the molecules are lying flat on the substrate
  • mesh parameters, the corresponding models in Figure 3d,e can be established. Knowing that Cu-TCPP has a fourfold symmetrical structure with four equivalent anchoring groups, it is assumed, that Cu-TCPP lies flat and is commensurate with the surface of NiO(001). Considering the partial charge
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • , they reported a method based on a nickel–nitrotriacetic acid (Ni-NTA) complex as an anchoring group for different chemical functionalities [48][49][50]. Another study of the Tremel group involves terpyridine (TerPy) ligands [51]. NTA and TerPy are multi-dentate ligands, forming complexes with
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • Sha Dong Xiaoli Sun Zhiguo Wang School of Electronics Science and Engineering, Center for Public Security Technology Research, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China 10.3762/bjnano.10.77 Abstract Introducing anchoring materials into cathodes for Li–S
  • batteries has been demonstrated as an effective way to overcome the shuttle effect and enhance the cycling stability. In this work, the anchoring effects of 2H-MoS2 and 1T'-MoS2 monolayers for Li–S batteries were investigated by using density functional theory calculations. It was found that the binding
  • energies of Li2Sx absorbed on 1T'-MoS2 monolayer are in the range of 0.31–2.94 eV, which is much higher than on the 2H-phase. The 1T'-MoS2 monolayer shows stronger trapping ability for Li2Sx than the 2H-MoS2 monolayer. The 1T'-MoS2 monolayer can be used as effective anchoring material in cathodes for Li–S
PDF
Album
Full Research Paper
Published 26 Mar 2019

Topochemical engineering of composite hybrid fibers using layered double hydroxides and abietic acid

  • Liji Sobhana,
  • Lokesh Kesavan,
  • Jan Gustafsson and
  • Pedro Fardim

Beilstein J. Nanotechnol. 2019, 10, 589–605, doi:10.3762/bjnano.10.60

Graphical Abstract
  • hydrophobicity was carried out by anchoring a hydrophobic moiety, namely stearic acid (SA), on wood pulp via a bridging LDH molecule. This led a new hybrid organic–inorganic–organic composite (SA-LDH-CEL) [15]. There are two different methods to make cellulose hydrophobic: (1) chemical methods such as
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • nucleation centers for the anchoring the Au NPs) was conducted using XPS. The chemical modification caused by the plasma treatment results in the presence of hydroxy, carbonyl and carboxyl groups [36]. Furthermore, Au nucleation centers occur mainly in the proximity of oxygenated defects created during the
  • need to be subsequently decorated with Au nanoparticles. Oxygenated defects act as anchoring and nucleation sites. Therefore, high control in the decoration homogeneity and the size of Au nanoparticles (avoiding coalescence effects) have been reported in oxygen-plasma-treated CNTs [37]. Since
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Removal of toxic heavy metals from river water samples using a porous silica surface modified with a new β-ketoenolic host

  • Said Tighadouini,
  • Smaail Radi,
  • Abderrahman Elidrissi,
  • Khadija Haboubi,
  • Maryse Bacquet,
  • Stéphanie Degoutin,
  • Mustapha Zaghrioui and
  • Yann Garcia

Beilstein J. Nanotechnol. 2019, 10, 262–273, doi:10.3762/bjnano.10.25

Graphical Abstract
  • SiNL (C: 6.54% and N: 1.71%) the amount of the ligand L1 on the surface of SiNH2 is 0.14 mmol·g−1. The high carbon concentration in SiNH2 supports the anchoring of the silylating agent. The observed increase in both N and C content for SiNL indicates that the reaction with (Z)-1-(furan-2-yl)-3-hydroxy
PDF
Album
Full Research Paper
Published 23 Jan 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • , supportive and healthy cells of the original tissue [17]. Therefore, nanoparticles should possess the capacity to recognize the malignant cells and focus the effect onto them in order to achieve an efficient therapeutic effect. This ability can be incorporated in the nanodevice by anchoring targeting
  • the tumoral mass thanks to the enhanced accumulation of the particles. One of the problems associated with the use of antibodies for targeting is the partial loss of the binding capacity of the attached antibody during the anchoring process, which is usually carried out by non-specific chemical
PDF
Album
Review
Published 14 Jan 2019

Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes

  • Mateusz Mrukiewicz,
  • Krystian Kowiorski,
  • Paweł Perkowski,
  • Rafał Mazur and
  • Małgorzata Djas

Beilstein J. Nanotechnol. 2019, 10, 71–78, doi:10.3762/bjnano.10.7

Graphical Abstract
  • electric field can change the director orientation thereby causing a change in the optical properties. In the absence of an electric field, the orientation of n is determined by anchoring conditions. The field-induced reorientation of the LC director is known as the Frédericksz effect [3]. In the
  • follow the director due to the strong anchoring energy between 5CB’s benzene rings and the graphene’s honeycomb structure. The interactions between the liquid crystal molecules and the GO flakes are responsible for the lower elastic torque. Conclusion We studied the change of the threshold voltage in
PDF
Album
Full Research Paper
Published 07 Jan 2019

A novel polyhedral oligomeric silsesquioxane-modified layered double hydroxide: preparation, characterization and properties

  • Xianwei Zhang,
  • Zhongzhu Ma,
  • Hong Fan,
  • Carla Bittencourt,
  • Jintao Wan and
  • Philippe Dubois

Beilstein J. Nanotechnol. 2018, 9, 3053–3068, doi:10.3762/bjnano.9.284

Graphical Abstract
  • –Al LDH in this work. Herein, OCPS was chosen as the candidate POSS intercalator because of the following advantages: (i) The long alkyl chains anchoring on the rigid POSS cage are flexible, reducing the resistance against the formation of layered structure. (ii) The OCPS molecule is rich in
PDF
Album
Full Research Paper
Published 19 Dec 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • beneficial effect for the degradation of MB, which could be also facilitated by an anchoring mechanism to a more hydrophilic TiO2 surface [90]. Further information on the degradation of MB was obtained with Raman spectroscopy. Figure 9e shows the spectra recorded for the solutions at the end of the treatment
  • the TNTs does not correspond directly to their length, but more to the amount of surface hydroxy groups (induced by the fluorination and N dopant atoms) observed by XPS, which is related to the anchoring process. Thus, while the total exposed area (inner or outer walls of the tubes) remains important
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • reduction of Cr(VI) under UV light irradiation. The anchoring of TiO2 over Fe3O4 resulted in (i) high dispersion of the active site, which is important for achieving higher reaction rate, (ii) enhancement of the photoreduction rate by decreasing the recombination of electron−hole pairs due to significant
PDF
Album
Review
Published 16 May 2018

Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells

  • Hana Krýsová,
  • Josef Krýsa and
  • Ladislav Kavan

Beilstein J. Nanotechnol. 2018, 9, 1135–1145, doi:10.3762/bjnano.9.105

Graphical Abstract
  • anchoring of TiO2 to FTO. This hypothesis is rationalized by the well-known chelating effect of acetylacetone on both organometallic complexes and on oxidic surfaces. The optimization through compositional variation is limited by the growth of complicated species, particularly if the acetylacetone
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2018

Optical orientation of nematic liquid crystal droplets via photoisomerization of an azodendrimer dopant

  • Sergey A. Shvetsov,
  • Alexander V. Emelyanenko,
  • Natalia I. Boiko,
  • Alexander S. Zolot'ko,
  • Yan-Song Zhang,
  • Jui-Hsiang Liu and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2018, 9, 870–879, doi:10.3762/bjnano.9.81

Graphical Abstract
  • homeotropic anchoring of the NLC film. The boundary conditions can be changed to planar and then return to homeotropic again by photoisomerization processes. The effects of NLC film orientation are very similar to the bulk mediated photoalignment [26][27], which are influenced by exchange of the dopant
  • ) tends to turn the radial structure of the droplets to the one (Figure 2c) that is close to the initial bipolar structure (Figure 2a). The NLC droplet orientation is caused by planar anchoring conditions or anchoring conditions tilted at a small angle [34][35]. It is possible to induce the orientational
  • (or close to planar) anchoring of NLC with glycerol (Figure 3c). The reverse changes from planar to homeotropic anchoring of NLC with glycerol can be produced by light irradiation with λmax = 398 nm (or 406 nm), and then, from homeotropic to degenerated planar anchoring, by light irradiation with λmax
PDF
Album
Full Research Paper
Published 13 Mar 2018

Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

  • Błażej Scheibe,
  • Radosław Mrówczyński,
  • Natalia Michalak,
  • Karol Załęski,
  • Michał Matczak,
  • Mateusz Kempiński,
  • Zuzanna Pietralik,
  • Mikołaj Lewandowski,
  • Stefan Jurga and
  • Feliks Stobiecki

Beilstein J. Nanotechnol. 2018, 9, 591–601, doi:10.3762/bjnano.9.55

Graphical Abstract
  • intensity decreased due to anchoring of Fe3O4 nanoparticles at the defect sites. All the spectra are featured by the C=C aromatic double bond at 1667 cm−1 (V) and the C–C bond at 1447 cm−1 (VII). However, only hybrid aerogels exhibit C=O and C–O vibrations at 1723 cm−1 (IV) and 1205 cm−1 (VIII
  • corresponding to metal oxide (grey arrows). This indicate that Fe3O4 and PDA@Fe3O4 nanoparticles are replacing the above mentioned functional groups and attach at the defects sites at the graphene lattice. In that way, the defects act as anchoring centers for the particles. This assignment was further confirmed
  • polydopamine coating of magnetite nanoparticles on the structure and properties of rGO-Fe3O4 aerogels was studied. It was found that the polydopamine coating has a positive effect on the aerogel structure by supplying carbon atoms to the defected hexagonal structure and anchoring of PDA-coated Fe3O4
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2018

Dynamic behavior of nematic liquid crystal mixtures with quantum dots in electric fields

  • Emil Petrescu,
  • Cristina Cirtoaje and
  • Octavian Danila

Beilstein J. Nanotechnol. 2018, 9, 399–406, doi:10.3762/bjnano.9.39

Graphical Abstract
  • nanoparticles [6], quantum dots (QDs) [7][8][9][10][11][12] or other nanomaterials [13][14][15][16][17] that can be effectively used in electro-optical devices. When added to liquid crystals, quantum dots may seriously influence their behavior under an electric field due to the anchoring forces acting on the
  • liquid crystal is acting like a continuous fluid and the interaction forces between its molecules are elastic. Taking into account a strong anchoring on the glass support, the free energy density of such a system with added quantum dots is: where fN is the liquid crystal free energy density, fE is a term
  • and the configuration given in Figure 3, as well as homeotropic anchoring of liquid crystal molecules on the QD surface [12], the interaction energy for a particle can be obtained using a similar procedure as presented by Burylov [22]: where w is the anchoring energy on the surface of the nanoparticle
PDF
Album
Full Research Paper
Published 01 Feb 2018

Periodic structures on liquid-phase smectic A, nematic and isotropic free surfaces

  • Anna N. Bagdinova,
  • Evgeny I. Demikhov,
  • Nataliya G. Borisenko,
  • Sergei M. Tolokonnikov,
  • Gennadii V. Mishakov and
  • Andrei V. Sharkov

Beilstein J. Nanotechnol. 2018, 9, 342–352, doi:10.3762/bjnano.9.34

Graphical Abstract
  • ; liquid crystals; microscopy; smectic A phase; Introduction The considerable interest in studies of liquid crystalline free boundaries that has recently arisen is due to their intrinsic free surface properties which are not influenced by the substrate anchoring [1][2]. This is very important for many
  • amplitudes by the program MetroPro. A piece of LC display was used as a substrate (Figure 12), which provides two main advantages. First, it has a large anchoring energy for theliquid crystal director field, and second, helps to better focus at the bottom edge of the liquid crystal layer. During the
PDF
Album
Full Research Paper
Published 30 Jan 2018

Wafer-scale bioactive substrate patterning by chemical lift-off lithography

  • Chong-You Chen,
  • Chang-Ming Wang,
  • Hsiang-Hua Li,
  • Hong-Hseng Chan and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2018, 9, 311–320, doi:10.3762/bjnano.9.31

Graphical Abstract
  • biological species recognition with minimum nonspecific attachment. Herein, a straightforward approach utilizing chemical lift-off lithography to create a diluted self-assembled monolayer matrix for anchoring diverse biological probes is introduced. The strategy encompasses convenient operation, well-tunable
  • -arrangement of silane or thiol molecules on silica or Au surfaces, which has been proven as a convenient route for the fabrication of functional surfaces toward versatile targets [12][13][14][15][16]. In addition to direct surface modification, the versatility of anchoring molecule tail groups provides
  • steps, and biomolecule anchoring. It should be noted that the conformal contact reaction requires no external pressure, and the lift-off operation is performed under ambient conditions. As shown in the AFM images of Figure 1, the SAM-modified Au surface reveals a depressed square pattern after CLL
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • ligand to complete the active dye [43][44][45]. We present in this paper, high-resolution structural and electrical measurements obtained by nc-AFM of a typical anchoring ligand (DCPDMbpy), based on a 6,6′-dimethyl-2,2′-bipyridine metal-binding domain with two 4-carboxyphenyl anchoring groups (see Figure
  • (001) surface, we investigated the adsorption properties of the anchoring ligand DCPDMbpy, at various coverages. Depending on the deposition conditions and post-deposition treatments of the sample, DCPDMbpy molecules remain separated or form molecular clusters or islands on the surface of NiO(001) at
  • between the NiO surface and the dye precursor molecule DCPDMbpy. Conclusion We have presented high-resolution topographic measurements using bimodal nc-AFM at room temperature of the anchoring part of a larger dye molecule (DCPDMbpy) adsorbed on a NiO(001) crystal surface. The surface structure of NiO(001
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Dynamic behavior of a nematic liquid crystal with added carbon nanotubes in an electric field

  • Emil Petrescu and
  • Cristina Cirtoaje

Beilstein J. Nanotechnol. 2018, 9, 233–241, doi:10.3762/bjnano.9.25

Graphical Abstract
  • models have to be developed for their characterization [5][6][9][10][11]. When nanoparticles are inserted in liquid crystals, nematic molecules are attached to the particle surface due to anchoring forces. Experimental studies revealed that carbon nanotubes have a strong interaction with liquid crystal
  • we consider the interaction free energy between nanoparticles and nematic liquid crystal molecules given by the model proposed by Burylov and Zakhlevnykh [17], we get: where f is the volumetric fraction of nanotubes, R is the nanotubes radius, w is the average anchoring energy density at the nematic
  • Dierking and co-workers [13][14] proved an alignment of CNTs parallel to the liquid crystal molecules, so we may assume that the anchoring angle α is neglectable. Thus, Equation 11 becomes: When exposed to an external electric field higher than the critical Fréedericksz transition threshold the molecules
PDF
Album
Full Research Paper
Published 22 Jan 2018

Nematic topological defects positionally controlled by geometry and external fields

  • Pavlo Kurioz,
  • Marko Kralj,
  • Bryce S. Murray,
  • Charles Rosenblatt and
  • Samo Kralj

Beilstein J. Nanotechnol. 2018, 9, 109–118, doi:10.3762/bjnano.9.13

Graphical Abstract
  • interaction strength, is the surface normal of the local confinement, and describes preferred nematic ordering of the surface. The surface term given by Equation 8 enforces for w > 0 (w < 0) degenerate tangential (homeotropic) anchoring. On the other hand, the contribution in Equation 9 is minimized for
  • the Cartesian (x,y,z) or cylindrical geometry (r,φ,z), as illustrated in Figure 1. Accordingly, we use two different boundary conditions, to which we refer as “boundary anchoring condition” (BAC) [18] and “surface anchoring condition” (SAC), respectively. We use BAC in the “Cartesian” cells. We assume
  • Equation 10, in which we set m = 1. At the bottom plate we enforce homeotropic anchoring conditions using the ansatz in Equation 8. At the lateral boundaries we assume free boundary conditions. These conditions impose a boojum topological defect at the top plate [19][20]. Note that in our simulations we
PDF
Album
Full Research Paper
Published 10 Jan 2018

Nematic liquid crystal alignment on subwavelength metal gratings

  • Irina V. Kasyanova,
  • Artur R. Geivandov,
  • Vladimir V. Artemov,
  • Maxim V. Gorkunov and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2018, 9, 42–47, doi:10.3762/bjnano.9.6

Graphical Abstract
  • have also obtained a 90° twisted LC director distribution, implying sufficiently strong azimuthal LC anchoring at the grating surface. Keywords: alignment; Fourier analysis; nematic liquid crystal; subwavelength metal grating; Introduction In the age of nanotechnology, various nanostructured
  • twisted distribution of the LC director takes place in the layer. The appearance of the twist demonstrates that the subwavelength aluminum gratings are capable of aligning liquid crystals along their slits with rather small pretilt angles and that the anchoring energy is high enough to balance the elastic
  • torque at the surface, which is provided by the twisted deformation across the LC layer. The azimuthal anchoring strength can be estimated from the fact that the angular deviation from the 90o twist is not higher than our experimental accuracy (δφ ≈ 3°). Our analysis shows that in the case of such small
PDF
Album
Full Research Paper
Published 04 Jan 2018

Magnetic field induced orientational transitions in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov and
  • Alexander N. Zakhlevnykh

Beilstein J. Nanotechnol. 2017, 8, 2807–2817, doi:10.3762/bjnano.8.280

Graphical Abstract
  • absolutely rigid anchoring of NLC molecules with the boundaries. We set the origin of the coordinate system at the middle of the layer (see Figure 1). We use the unit vectors n and m, the so-called directors, to describe the preferential orientation of the LC molecules and CNTs, respectively. We assume soft
PDF
Album
Full Research Paper
Published 29 Dec 2017
Other Beilstein-Institut Open Science Activities