Search results

Search for "HRTEM" in Full Text gives 203 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • TEM since some layers could be viewed via the bended NSs. Figure 3d is a filtered HRTEM image showing evidence of MoS2 NS stacking defects highlighted by the arrows. These defects are inherent to the fabrication process. This NSs stacking configuration could exhibit interesting properties in membrane
  • sulfurization of a 50 nm Mo film at 850 °C on SiO2/Si substrates: (a) Plane-view HRTEM image; (b) high-magnification TEM image; (c) FFT pattern of panel (a); (d) filtered HRTEM image indicating the presence of sheet stacking defects (indicated by orange arrows). MoS2 sample grown by double sulfurization of a 50
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • observed in the HRTEM image of the ZnO@NCNT composite (Figure 3a), which correspond to the (002) and (101) planes of ZnO, respectively. Figure 3b shows the selected area electron diffraction (SAED) patterns of the ZnO@NCNT composite. The diffraction rings represent different planes of ZnO, revealing the
  • ). Scanning electron microscopy (SEM) images were collected on a Hitachi S4800 scanning electron microscope. High-resolution transmission electron microscopy (HRTEM) images were recorded with a JEOL JEM-2100F transmission electron microscope. The elements distribution images were detected by using TEM at 160
  • a battery testing system (Neware, Shenzhen) in the potential range of 1–3 V vs Li/Li+. XRD patterns of S, ZnO@NCNT and S/ZnO@NCNT composite. TGA curve of the S/ZnO@NCNT composite. (a) HRTEM image; (b) SAED patterns; (c) TEM image; (d–g) EDX mapping images of the ZnO@NCNT composite. (a) SEM image; (b
PDF
Album
Full Research Paper
Published 06 Jun 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • corresponding to polycrystalline TiO2(B). The high-resolution TEM (HRTEM) image demonstrated in Figure 3c shows parallel fringes with a neighboring distance of ≈0.545 nm, corresponding to the (200) plane of TiO2(B) and distance of ≈0.382 nm, which is attributed to the (110) plane of TiO2(B). The cross-angle of
  • vibrational modes of the TiO2(B) phase [28], which is in agreement with the XRD and HRTEM results. A weak Raman peak located at 1657 cm−1 can be discerned in the TGN sample, which corresponds to the G band (graphitized carbon), confirming the existence of graphene in the powders [31]. The peak intensity
  • , b) TEM and (c) HRTEM image of sample TGN-branch 4 h. The inset in (b) shows the corresponding SAED pattern. Raman spectra of samples TGN and TGN-branch 4 h recorded over the range of (a) 100–1000 cm−1 and (b) 1000–2000 cm−1. (a) XPS survey spectrum and core level XPS spectra of (b) Ti 2p, (c) C 1s
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • −, small AgI nanoparticles (diameter: 20–40 nm) are uniformly coated on the surface of Ag2WO4 nanorods, signifying the formation of the AgI/Ag2WO4 core–shell heterostructure. To more clearly observe the microstructure of the AgI/Ag2WO4 composite, the TEM and high-resolution TEM (HRTEM) images are shown in
  • Figure 2e,f. It can be seen that many nanoparticles are deposited on the surface of the Ag2WO4 nanorods (Figure 2e). The HRTEM image (Figure 2f) shows that one set of lattice fringes can be observed. The lattice fringe of 0.23 nm matches well with the (220) plane of AgI. No lattice fringe correlated to
  • scanning electron microscope (FE-SEM, Hitachi S–4800) and a high-resolution transmission electron microscope (HRTEM, JEOL JEM–2010F). Energy-dispersive X-ray (EDX) spectroscopy coupled with SEM was employed to identify the chemical composition of the sample. UV–vis diffuse reflectance spectra (UV–vis DRS
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • on carbon tape. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) measurements and nanobeam electron diffraction patterns were performed using a Tecnai F30 (FEI) instrument operated at 300 kV or a Tecnai G2 (FEI) instrument operated at 200 kV. Both were
  • nanoparticles of Fe50Co50@CNT was investigated by HRTEM measurements. Surprisingly, some particles in the as-prepared sample showed high crystallinity, even without annealing, as shown in Figure 3c. The crystallinity of the core material was confirmed by the appearance of the lattice fringes (marked by short
  • nanoparticles The crystallinity of the Fe–Co nanoparticles was verified by powder XRD, HRTEM and nanobeam electron diffraction. No indication of oxide or carbide phases were detected, which means that the synthesis approaches guarantee CNTs as protective shells for the MNPs. The additional annealing step is
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018

Graphene composites with dental and biomedical applicability

  • Sharali Malik,
  • Felicite M. Ruddock,
  • Adam H. Dowling,
  • Kevin Byrne,
  • Wolfgang Schmitt,
  • Ivan Khalakhan,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Lok Kumar Shrestha,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2018, 9, 801–808, doi:10.3762/bjnano.9.73

Graphical Abstract
  • 0.47 eV). High resolution spectra for the core level C 1s and O 1s were recorded in 0.05 eV steps. An electron flood gun was used during the measurements to prevent sample charging. The FLG material was also characterized by TEM, HRTEM (Jeol ARM at 80 kV) and helium ion microscopy (HeIM, Zeiss Orion at
  • ) TEM overview of FLG and d) HRTEM detail of FLG showing a single layer. a) and b) AFM detail and profile of a multi-layer graphene (MLG) flake, ca. 10 graphene layers, c) and d) AFM detail and profile of a few-layer graphene (FLG) flake, ca. 1–6 graphene layers. a) GI composite after strength testing
PDF
Album
Full Research Paper
Published 05 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • BiOI nanolayers. As pure ZnO, sample B-6 (Figure 2c) presents nanospheres with a highly smooth surface, which is possibly caused by calcination [38]. In order to make further investigations on the ZnO/BiOI heterostructure, TEM and HRTEM analysis were applied. Figure S2a, Supporting Information File 1
  • and HRTEM images on the different edges of sample B-3 are displayed in Figure 3a–c, where lattice fringe spacings are 0.30 and 0.28 nm, respectively, matching well with the interplanar distances of the (102) plane in BiOI and the (100) plane in ZnO. These results further validate the formation of
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • ), and HRTEM (JEOL2100). UV–vis analysis was carried out on a spectrophotometer (FLAME-S, Ocean Optics, Inc.). PL measurements (IK3301R-G, Kimmon Koha) were performed at room temperature using a He–Cd laser source (325 nm). For TRPL decay measurement of ZnO structures, a time-correlated single photon
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • -thermal (PT) route compared to other methods such as impregnation (IM) and physical mixture (PM). The CeO2/CNT-PT has smaller and narrower ceria particle size distribution (2 to 14 nm) than CeO2/CNT-IM (6 to 20 nm) based on the TEM and HRTEM analysis. In addition, NH3-TPD analysis was carried out in order
  • MnO2 crystalline phase at high loading (1.8%). This suggests that the Mn–Ce particles were evenly distributed on the CNTs. The TEM images specified that the size of Mn–Ce particles were very small crystals and well dispersed on the surface of the MWCNTs. Further analysis was conducted using HRTEM in
  • the NO removal activity. 0.5 Mn/(Mn + Ce) molar ratio was found to be the optimum loading amount for Mn–CeOx/CNT catalyst preparation. From the HRTEM images, an uneven shape and fuzzy crystal lattice was identified on the metal nanoflakes suggesting that the Mn–CeOx/CNT catalyst is amorphous in
PDF
Review
Published 27 Feb 2018

Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles

  • Fuat Topuz and
  • Tamer Uyar

Beilstein J. Nanotechnol. 2018, 9, 693–703, doi:10.3762/bjnano.9.64

Graphical Abstract
  • particles with a mean size of 185 nm, suggesting that the addition of β-CD leads to the formation of larger particles (Figure 2a). HRTEM images of the respective particles revealed a mesoporous structure in the particles (Figure 2b,c (vii)). Since the particles do not display any aggregation, the CTAC
  • the particles synthesized at 0.75% (w/v) β-CD, MSNs prepared at 0.25% (w/v) revealed particle aggregates (Figure S4, Supporting Information File 1). HRTEM images of the particles evidenced porosity in both particles. The nanoparticles were also synthesized at various CTAC concentrations at the
  • with a mean pore size of 0.78 nm while the surface area of the respective particles was 764.38 m2/g. This is in line with the HRTEM analysis of the respective particles (Figure 3f). Even though the pore size is significantly smaller, the pore volume was increased from 0.791 to 0.853 cm3/g. The presence
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • ) measurements were performed by using the same SEM instrument in order to find the elemental constituents of the samples. More detailed investigations on the morphology were obtained by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Images were recorded on a Technai G 20 (FEI) S
  • Figure S1, Supporting Information File 1 show the presence of all the constituent elements. The TEM images of g-C3N4, CT and CTCN heterojunction are presented in Figure 5. Pure g-C3N4 exhibits a 2D lamellar sheet-like morphology (Figure 5a). The HRTEM image of g-C3N4 shows lattice fringes with 0.325 nm
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • chemical composition of samples was analyzed by XPS (PHI Quantera II, Ulvac-PHI, Inc.) with an Al Kα radiation source. High resolution transmission electron microscope (HRTEM, FEI-TECNAI F20) images were obtained at 200 kV. PL spectra of CDs solution were acquired with a PL spectrophotometer (Perkin Elmer
  • ) HRTEM image of CD/g-C3N4(0.5). The insets of (b) and (e) show the energy-dispersive X-ray spectroscopy (EDS) results and particle size distribution of CDs, respectively. (a) XRD patterns and (b) FTIR spectra of g-C3N4, CD/g-C3N4(0.1), CD/g-C3N4(0.2), and CD/g-C3N4(0.5). (a) The absorption spectrum of
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

  • Ruiyuan Zhuang,
  • Shanshan Yao,
  • Maoxiang Jing,
  • Xiangqian Shen,
  • Jun Xiang,
  • Tianbao Li,
  • Kesong Xiao and
  • Shibiao Qin

Beilstein J. Nanotechnol. 2018, 9, 262–270, doi:10.3762/bjnano.9.28

Graphical Abstract
  • HRTEM image indicated that the grown structure was single crystalline with a lattice spacing of 0.344 nm, corresponding to the [11] crystal plane of monoclinic MoO2 (Figure 3i). SEM images of pure sulfur and S/MoO2–CNF composites are displayed in Figure 4a,b, respectively. The sulfur morphology was
  • and morphology of the fibers was determined by scanning electron microscopy (SEM, JSM-7001F). Details concerning the morphology and structure were examined by high-resolution transmission electron microscopy (HRTEM, Tecnai G2 F30), operated at an accelerating voltage of 200 kV. Selected specimens were
  • examined with energy dispersive X-ray (EDX) spectroscopy and elemental mapping attached to the HRTEM operating at 200 kV. The adsorption ability was determined by preparing a Li2S6 solution through the addition of Li2S to sulfur at the molar ratio of 1:5 in tetrahydrofuran (THF) under stirring. The
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • vapours, and (ii) ultraviolet (UV) decomposition of AgNO3 in a suspension of BN NPs. The hybrid microstructures were studied by high-resolution transmission electron microscopy (HRTEM), high-angular dark field scanning TEM imaging paired with energy dispersion X-ray (EDX) mapping, X-ray photoelectron
  • to 35 nm, were also detected (Figure 1h). The HRTEM images of individual BN/Ag HNMs obtained via CVD and UV decomposition methods are illustrated in Figure 1f and 1i. The outer BN NP surface is formed by BN nanosheets consisting of several h-BN atomic layers and Ag NPs located between the petals
  • . HADF-STEM and spatially-resolved EDX mapping (Figure 2) demonstrate that the surface of BN NPs is densely populated with Ag NPs. Thorough structural characterization of individual Ag NPs revealed their fine structure. The HRTEM images of individual Ag NPs are depicted in Figure 2c and 2f. The particles
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • TEM with a LaB6 cathode operated at 120 kV. High resolution transmission electron microscopy (HRTEM) was done using an aberration corrected Titan 80-300 (FEI, Eindhoven, The Netherlands) with field emission gun, operated at 300 kV. Scanning transmission electron microscopy (STEM) and chemical analysis
  • samples. The slight differences between the AuNP distribution in TEM and STEM may be due to variation between sample areas. Both the AuNPs and the TNPs were further analyzed via HRTEM and fast Fourier transformation (FFT) analysis of the observed lattice fringes along with further EDXS experiments. Figure
  • S4, Supporting Information File 1 shows a representative HRTEM image of a typical AuNP and the surrounding TNP in TS_Au5.0. The size of the AuNP (dark spot) is 12 nm. The AuNP is surrounded by different TNPs of about 5 nm in diameter. The size was deduced from the extension of the lattice fringes
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

  • Jiajun Wang,
  • Xia Liu,
  • Gesmi Milcovich,
  • Tzu-Yu Chen,
  • Edel Durack,
  • Sarah Mallen,
  • Yongming Ruan,
  • Xuexiang Weng and
  • Sarah P. Hudson

Beilstein J. Nanotechnol. 2018, 9, 137–145, doi:10.3762/bjnano.9.16

Graphical Abstract
  • synthesized C-dots (Figure S1, Supporting Information File 1) and a decrease in the QY. Characterization of the carbon nanodots The morphology of the products was characterized by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Figure 1A–C shows the TEM
  • different additives obtained and labeled as Sa, Sb, Sc, Sd, and Se, respectively. Carbon nanodot characterization The product morphology was assessed by TEM and HRTEM, which was performed on a JEOL-2100F instrument with an accelerating voltage of 200 kV. The XRD patterns of Sa, Sb, and Se were recorded on a
  • viability. Quantification is reported as relative values to the negative control, where the negative control (untreated) is set to 100% viability. TEM and HRTEM (inset) images of (A) Sa, (B) Sb, (C) Se samples, and corresponding size (diameter) distribution ranges for (D) Sa, (E) Sb, and (F) Se. (A–C) UV
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • microscope (FE-SEM, JSM-6700F), a transmission electron microscope (TEM, JEM 100-CXII) with an accelerating voltage of 80 kV, and a high-resolution TEM (HRTEM, GEOL-2010) with an accelerating voltage of 200 kV. Also, powder X-ray diffraction (XRD) patterns were collected on an X-ray diffractometer (Rigaku D
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • microscopy (SEM, Zeiss SUPRA 60 VP) and high-resolution transmission electron microscopy (HRTEM, FEI Titan 80-300). TEM measurements were performed at 80 kV operation voltage and images acquired using a Gatan US1000 CCD camera. TEM samples were prepared by scraping the grown carbon nanostructures from the
  • in a good agreement with XPS investigations of CNFs by other authors [41][42]. The weak component at 285.0 eV (blue dashed line) originates from so-called ’adventitious carbon’ sp3, describing hydrocarbon contamination due to the exposure to ambient atmosphere. The HRTEM images in Figure 4 b reveal
  • 284.4 eV indicates sp2-hybridized carbon (blue solid line) and the weak component at 285.0 eV is stemming from adventitious sp3-hybridized carbon (blue dashed line). (b) HRTEM images of the grown CNFs. Summary of experiments resulting in CNF growth (green circles) or in no CNF growth (red triangles
PDF
Album
Full Research Paper
Published 15 Dec 2017

PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

  • Chengxi Zhang,
  • Weiling Luan,
  • Yuhang Yin and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2017, 8, 2521–2529, doi:10.3762/bjnano.8.252

Graphical Abstract
  • electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) (JEM-2100F, JEOL LTD) images of CsPbX3 QDs of five different colors. Table S2 in Supporting Information File 1 lists the reaction conditions for the production of the five different perovskite QDs. The blue and yellow
  • ° in accord with the results reported in the literature [30][31][32], confirming that the crystal structure is cubic. The average size of the red perovskite QDs is approximately 4.85 nm as estimated using the fitting of the XRD data, which is compatible with the result of ≈5 nm from the HRTEM results
  • rhodamine 6G (QY = 95% in ethanol [40]). HRTEM images were taken on a TEM (JEM-2100F, Jeol, USA) operated at 200 kV, and the sample was prepared by dipping an amorphous carbon–copper grid in a dilute n-hexane dispersed QD solution. The sample was then left to evaporate at room temperature. X-ray diffraction
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • . The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis absorption spectroscopy (UV–vis). The photocatalytic activity of the
  • were characterized with a powder X-ray diffraction instrument (XRD, D/Max–2500, Rigaku). The morphology and microstructure were examined by scanning electron microscopy (FE-SEM, JEOL–JSM 700F). The chemical composition was characterized using energy dispersive X-ray spectroscopy (EDS). TEM and HRTEM
  • loaded onto KNb3O8 nanosheets was characterized via TEM (Figure 4) and HRTEM (Figure 5). The crystalline ZnO quantum dot average diameter was about 10 nm and they were found dispersed on the surface of the KNb3O8 nanosheets. The HRTEM image revealed a lattice spacing of 0.282 nm (Figure 5), which clearly
PDF
Album
Full Research Paper
Published 30 Oct 2017

In situ controlled rapid growth of novel high activity TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites

  • Jilin Wang,
  • Hejie Liao,
  • Yuchun Ji,
  • Fei Long,
  • Yunle Gu,
  • Zhengguang Zou,
  • Weimin Wang and
  • Zhengyi Fu

Beilstein J. Nanotechnol. 2017, 8, 2116–2125, doi:10.3762/bjnano.8.211

Graphical Abstract
  • ), scanning electron microscope (SEM), X-ray energy dispersive spectroscopy (EDX), transition electron microscopy (TEM), high-resolution TEM (HRTEM) and selected-area electron diffraction (SAED). The obtained TiB2/TiN hierarchical/heterostructured nanocomposites demonstrated an average particle size of 100
  • to 30 nm. In order to further determine the internal microstructure and phase constitution of the as-synthesized samples, the high-resolution transition electron microscopy (HRTEM) (Figure 2d,f) and selected-area electron diffraction (SAED) (Figure 2e,g) analysis of the tapered nanorods and grains
  • planes of TiB2 were found along the length direction of the nanorods and formed an angle with that of TiN. As for the grains, the typical HRTEM image (Figure 2f) presented clear lattice fringes with different interplanar spacings of about 0.26 nm, which was close to that of the (100) plane of TiB2. The
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2017

Synthesis and catalytic application of magnetic Co–Cu nanowires

  • Lijuan Sun,
  • Xiaoyu Li,
  • Zhiqiang Xu,
  • Kenan Xie and
  • Li Liao

Beilstein J. Nanotechnol. 2017, 8, 1769–1773, doi:10.3762/bjnano.8.178

Graphical Abstract
  • arranged into long, straight nanowires with smooth surfaces. The average diameter of the nanowires was about 150 nm, which can be observed in Figure 2b,d. Figure 3 shows XRD and HRTEM patterns of the as-prepared bimetallic Co–Cu nanowires. In Figure 3a, two characteristic peaks of face-centered cubic Co at
  • -centered cubic Co and Cu without any impurity peaks; therefore, the product was confirmed to be bimetallic Co–Cu nanowires. Furthermore, The HRTEM pattern in Figure 3b showed that the two types of lattice spacings for Co were about 0.20 nm and 0.13 nm, which were in excellent agreement with (111) and (220
  • ) lattice planes of face-centered cubic Co, respectively. Moreover, the lattice spacing of Cu was about 0.21 nm, which was consistent with the (111) lattice plane of face-centered cubic Cu. Hence, the components of the bimetallic Co–Cu nanowires were further confirmed through the HRTEM result. In order to
PDF
Album
Letter
Published 25 Aug 2017

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

  • Arūnas Jagminas,
  • Agnė Mikalauskaitė,
  • Vitalijus Karabanovas and
  • Jūrate Vaičiūnienė

Beilstein J. Nanotechnol. 2017, 8, 1734–1741, doi:10.3762/bjnano.8.174

Graphical Abstract
  • conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), FTIR
  • magneto-plasmonic cobalt ferrite NPs decorated with Au0/Au1+ quantum dots (QDs) were formed for the first time. The formation of plasmonic gold QDs at the surface of iron oxide-based NPs was confirmed by HRTEM, AFM, FTIR, XPS and chemical analysis. Results and Discussion Synthesis and characterization of
  • superparamagnetic. The high-resolution TEM image of the CoFe2O4@Met NPs after gold deposition with methionine and the EDX spectrum of these NPs are shown in Figure 2. The HRTEM image shows the formation of numerous gold species at the surface of methionine-stabilized CoFe2O4@Met NPs. In accordance with HRTEM image
PDF
Album
Full Research Paper
Published 22 Aug 2017

Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

  • Lyubov G. Bulusheva,
  • Yuliya V. Fedoseeva,
  • Emmanuel Flahaut,
  • Jérémy Rio,
  • Christopher P. Ewels,
  • Victor O. Koroteev,
  • Gregory Van Lier,
  • Denis V. Vyalikh and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 1688–1698, doi:10.3762/bjnano.8.169

Graphical Abstract
  • by catalytic chemical vapor deposition (CCVD) using CH4 (18 mol %) in H2 at 1000 °C and an Mg1−xCoxO solid solution as catalyst [23]. High-resolution transmission electron microscopy (HRTEM) showed that a typical sample consists of ca. 80% DWCNTs, 20% SWCNTs, and a few triple-walled nanotubes. The
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • transmission electron microscopy (HRTEM) and Raman spectroscopy. Contact angle and electrical resistance measurements of the VGNs are carried out as well. Results and Discussion Growth and optimization Case I: Influence of growth temperature We investigated the early-stage nucleation and growth of VGNs over a
  • HRTEM in Figure 2b clearly shows the thickness of a NG layer grown at 600 °C to be 15.44 nm, matching well with that obtained from the SEM cross sections (17 ± 2 nm). TEM of VGNs grown at 800 °C, shown in Figure 2c, reveals transparent sheets with the corrugated and wrinkled structure. The HRTEM in
PDF
Album
Full Research Paper
Published 10 Aug 2017
Other Beilstein-Institut Open Science Activities