Search results

Search for "MoS2" in Full Text gives 87 result(s) in Beilstein Journal of Nanotechnology.

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • materials, nanoscale metal chalcogenides (Cu2−xE, E = S, Se, Te), transition metal dichalcogenide nanostructures (e.g., WS2, MoS2), metal-oxide nanoparticles (e.g., WO3), and nanoscale coordination compounds (e.g., Prussian blue nanoparticles) [33][36][37][38]. The photothermal properties of these
  • nanostructures provided rapid and efficient eradication of up to 99% of both Gram-positive and Gram-negative bacteria within 10 min of NIR laser irradiation. In a very recent publication, poly(vinyl alcohol) hydrogel incorporating reduced graphene oxide composites (MoS2/Ag3PO4) was fabricated to yield a highly
  • NIR irradiation. Among other examples of photothermally active nanoparticles applied for bacteria eradication it is worth mentioning the MoS2 nanoparticles. These nanoparticles have a good biocompatibility and a high photothermal conversion efficiency over a broad NIR range [95]. PEG-MoS2 nanoflowers
PDF
Album
Review
Published 31 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • vibronic states of an almost isolated molecule. Here, we use scanning tunneling microscopy and spectroscopy to show that a single layer of MoS2 on Ag(111) exhibits a semiconducting bandgap, which may prevent molecular states from strong interactions with the metal substrate. We show that the lowest
  • the modes with strong electron–phonon coupling. Keywords: decoupling layer; molybdenum disulfide (MoS2); scanning tunneling microscopy, tetracyanoquinodimethane (TCNQ); vibronic states; Introduction When molecules are adsorbed on metal surfaces, their electronic states are strongly perturbed by
  • of decoupling layers made use of the in situ fabrication of single layers of transition metal dichalcogenides on metal surfaces. A monolayer of MoS2 on Au(111) provided very narrow molecular resonances, close to the thermal resolution limit at 4.6 K [26]. The exquisite decoupling efficiency has been
PDF
Album
Full Research Paper
Published 20 Jul 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • the electron–phonon interaction, i.e., scattering of electrons from defects. Chakrabarty et al. reported that the linewidth of the A1g peak in single-layer MoS2 that was subsequently used in transistors, broadened due to n-type doping where the phonon linewidth renormalized under the presence of an
  • dependence of the Raman shifts in 2D TMDCs such as MoS2 [20][21][22][23][24], and WS2 [25][26] have been extensively studied over a wide temperature range from which properties such as thermal conductivity was deciphered [23][27]. On the contrary, the temperature-dependent Raman analysis of WSe2 is rather
  • analyzed as a function of P. Najmaei et al. [45] have analyzed the laser-induced thermal effects in 1L MoS2 and with increasing thickness approaching the bulk by means of Raman spectroscopy. Here, for the first time, we report on the variation of the and A1g modes for 1L, ML and bulk WSe2 crystallites as
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • room temperature. Other materials currently may not exhibit room-temperature SP emission or there is no information about their potential paramagnetic defects that can be optically manipulated. MoS2 and h-BN are the most studied 2D platforms. MoS2 and h-BN have several nuclear spin atoms with large
PDF
Album
Review
Published 08 May 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • researchers to look into other layered materials, such as metal dichalcogenides (MoS2, WS2, WSe2), hexagonal boron nitride (h-BN), layered double hydroxides, metal hydroxides (Ni(OH)2, Co(OH)2), metal oxides (MoO3, WO3) and phyllosilicates, for various applications in different fields [2][3][4][5]. Among the
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • TiO2 and ZnO nanoparticles exhibit distinct and useful properties [35]. Other examples include a self-assembled MoS2-based composite that was developed for energy conversion and storage purposes [36], a silver-nanoparticle/cellulose-nanofiber composite that was applied for surface-enhanced Raman
PDF
Album
Editorial
Published 12 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • Cara-Lena Nies Michael Nolan Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland 10.3762/bjnano.11.30 Abstract Layered materials, such as MoS2, are being intensely studied due to their interesting properties and wide variety of potential
  • structures and MoS2 monolayers is therefore of significant importance and first-principles simulations can probe aspects of this interaction not easily accessible to experiment. Previous theoretical studies have focused particularly on the adsorption of a range of metallic elements, including first-row
  • density functional theory (DFT) study of the adsorption of small Cun (n = 1–4) structures on 2D MoS2 as a model system. We find on a perfect MoS2 monolayer that a single Cu atom prefers an adsorption site above the Mo atom. With increasing nanocluster size the nanocluster binds more strongly when Cu atoms
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • Chengxiang Tian Juwei Wu Zheng Ma Bo Li Pengcheng Li Xiaotao Zu Xia Xiang School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China 10.3762/bjnano.10.217 Abstract We report a simple one-step hydrothermal strategy for the fabrication of a C-MoS2/rGO
  • composite with both large surface area and high porosity for the use as advanced electrode material in lithium–sulfur batteries. Double modified defect-rich MoS2 nanosheets are successfully prepared by introducing reduced graphene oxide (rGO) and amorphous carbon. The conductibility of the cathodes can be
  • improved through the combination of amorphous carbon and rGO, which could also limit the dissolution of polysulfides. After annealing at different temperatures, it is found that the C-MoS2/rGO-6-S composite annealed at 600 °C yields a noticeably enhanced performance of lithium–sulfur batteries, with a high
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • and B-doped (001)-TiO2 via a solvothermal method in order to improve the visible-light photocatalytic activity [15]. Cao et al. used first-principles simulations to study the electronic and optical properties of (001)-TiO2 and MoS2 composites. Their results suggested that the effective
  • photosensitization of MoS2 and the stable interface between the two phases could promote the transfer of electrons from MoS2 to (001)-TiO2 and enhance its visible-light response [16]. It was also demonstrated that Au nanoparticles deposited on the surface of (001)-TiO2 particles could promote the separation of photo
PDF
Album
Full Research Paper
Published 01 Nov 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • funnel effect in monolayer BP [13], which describes the possibility of controlling exciton motion by means of inhomogeneous strains. They found that the funnel effect in BP is much stronger than that in MoS2, and more important, shows opposite behavior to that in MoS2. Excitons in BP are mainly
  • accumulated isotropically in strain-reduced regions, instead of occurring in the regions with a high tensile strain like in MoS2. Deniz et al. investigated the strain-related optical properties of monolayer BP using first principles calculations [7]. They found that the optical response of BP is sensitive to
PDF
Album
Full Research Paper
Published 24 Sep 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • perturbations such as microwave and plasma irradiation [45][46][47][48][49][50][51]. Carbon nanotubes, representative one-dimensional objects, were produced using catalysts as well [52][53][54][55]. Recently, two-dimensional materials such as graphene and MoS2 nanosheets attracted the interests of researchers
  • sophisticated strategy to realize chemotherapy targeting at cancer cells using the controlled assembly and disassembly of layer-by-layer hybrid structures made of two dimensional MoS2 nanosheets with DNA [87]. The preparation of functional low-dimensional materials requires preservation of nanoscale features in
PDF
Album
Review
Published 30 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • flexible MoS2-based composite paper by high-energy shear force milling and simple vacuum filtration. This composite material combines high flexibility, mechanical strength and good chemical stability. Chronopotentiometric charge–discharge measurements were used to determine the capacitance of our paper
  • extend their application to large energy storage systems or to the electromobility sector, an improvement in the energy storage capacity is necessary. Layered dichalcogenide materials such as molybdenum sulfide (MoS2) are promising candidates for the replacement of the commercial anode material graphite
  • . Apart from this specific application, chalcogenide materials also find numerous applications in various scientific fields [3][4][5]. During charge/discharge, MoS2 undergoes a 4-electron process resulting in a theoretical specific capacity of 669 mA·h·g−1, which is almost two times higher than that of
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • along two directions, resulting in a closed-cage quasi-spherical nanostructure [6]. Once available in large quantities [7][8], different electrical devices based on single WS2 and MoS2 nanotubes could be realized, including high-performance field effect transistors (FETs) [9][10] and electromechanical
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • external electric field to a rippled MoS2 monolayer [45] or a MoS2 nanoribbon [46][47] causes important changes in the electronic structure and reduces the bandgap. Also, applying an electric field to a 2D material mimics the presence of a gate voltage [48], and understanding the resulting changes in the
  • , as it was done with MoS2 [51] and phosphorene monolayers [52]. At the same time, the compounds studied could be relevant in optics and optoelectronics, to design new photodetectors, polarizing filters, or modulating devices, as has already been done with other two-dimensional compounds [53][54]. Also
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • [19], or dermal application [20]. More recent studies conducted on rhenium-doped MoS2 nanoparticles showed no acute toxic risk, neither by oral administration nor by dermal application [21][22]. A few years ago, Teo et al. compared the cytotoxicity of exfoliated MoS2, WS2, and WSe2 to that of their
  • carbon equivalent and found the toxicity of the former to be lower [23]. Wu et al. produced biocompatible MoS2 nanoparticles by a pulsed laser ablation technique [24]. Examples of medical applications with TMDC nanostructures are their addition as reinforcing agents to polymers for bone-tissue
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • batteries has been demonstrated as an effective way to overcome the shuttle effect and enhance the cycling stability. In this work, the anchoring effects of 2H-MoS2 and 1T'-MoS2 monolayers for Li–S batteries were investigated by using density functional theory calculations. It was found that the binding
  • energies of Li2Sx absorbed on 1T'-MoS2 monolayer are in the range of 0.31–2.94 eV, which is much higher than on the 2H-phase. The 1T'-MoS2 monolayer shows stronger trapping ability for Li2Sx than the 2H-MoS2 monolayer. The 1T'-MoS2 monolayer can be used as effective anchoring material in cathodes for Li–S
  • [11]. Polar materials were explored to trap LPSs, such as metal oxide [12][13] and metal-carbide nanoparticles [14]. Many two-dimensional (2D) materials, such as borophene [15], silicene [16], phosphorene [17], Mxene [18] and MoS2 [8], have been investigated as anchoring materials due to their large
PDF
Album
Full Research Paper
Published 26 Mar 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • dichalcogenide (2D TMDC) materials. However, it is very challenging to carry out such studies during chemical vapor deposition (CVD). Here, we report the first, real time, in situ study of the CVD growth of 2D TMDCs. More specifically, the CVD growth of a molybdenum disulfide (MoS2) monolayer on sapphire
  • substrates has been monitored in situ using differential transmittance spectroscopy (DTS). The growth of the MoS2 monolayer can be precisely followed by observation of the evolution of the characteristic optical features. Consequently, a strong correlation between the growth rate of the MoS2 monolayer and
  • spectroscopy; molybdenum disulfide (MoS2) monolayer; two-dimensional transition-metal dichalcogenides (2D TMDC); Introduction Two-dimensional transition metal dichalcogenide (2D TMDC) materials have drawn wide attention because of their fascinating physical and chemical properties [1][2][3][4][5][6]. Given
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • that since there is a large probability of a direct collision interaction within the overlying two-dimensional material in this range (as it was shown for typical and common 2D materials such as graphene and MoS2 in [1][4]), the beginning of the increase is expected to be upshifted on the horizontal
  • atoms in WS2 [19] to almost 32 eV for molybdenum in MoS2 [18] (this range includes values of ≈5–7 eV for S and Se in 2D TMDs [18][19] and ≈22–23 eV in graphene [20][21][22]). However, in [1] it was shown that, except for participating in the defect formation in adsorbed monolayers, the substrate can
  • electrons in the defect formation in monolayers is in accordance with the previously reported experiments [34]. The effect is expected to be more pronounced for semiconducting 2D materials, such as MoS2 and other 2D TMDs, where the electronic energy dissipation is less rapid than, for example, in graphene
PDF
Album
Full Research Paper
Published 22 Feb 2019

Polymorphic self-assembly of pyrazine-based tectons at the solution–solid interface

  • Achintya Jana,
  • Puneet Mishra and
  • Neeladri Das

Beilstein J. Nanotechnol. 2019, 10, 494–499, doi:10.3762/bjnano.10.50

Graphical Abstract
  • realizable application. On the other hand, exploring molecular functionalities under ambient conditions on technologically relevant two-dimensional surfaces such as graphene or MoS2 is highly desirable for realizing the full potential of molecules for a diverse range of devices [7][8][9][10][11]. At room
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Wearable, stable, highly sensitive hydrogel–graphene strain sensors

  • Jian Lv,
  • Chuncai Kong,
  • Chao Yang,
  • Lu Yin,
  • Itthipon Jeerapan,
  • Fangzhao Pu,
  • Xiaojing Zhang,
  • Sen Yang and
  • Zhimao Yang

Beilstein J. Nanotechnol. 2019, 10, 475–480, doi:10.3762/bjnano.10.47

Graphical Abstract
  • addition, the long-term moisture-retaining property of the WG-hydrogel provides an ideal substrate to cast other kinds of two-dimensional material films, such as MoS2, through a simple drop casting and drying method [16][17][18]. (a) Schematic of the preparation of the graphene/water-glycerol (WG) hydrogel
PDF
Album
Supp Info
Letter
Published 14 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • effect. Apart from this, these TMDCs, for example MoS2 and MoSe2, show an indirect to direct band gap transition [13][14][15][16][17]. A 2D platinum diselenide (PtSe2) material has recently joined the growing class of stable TMDCs due its promising applications. The 2D PtSe2 has not been explored much to
  • found to be −0.014 and −0.008, respectively. The nature of the temperature dependence of the Raman spectra of PtSe2 nanosheets is found to be similar in nature to that of graphene and other 2D materials such as MoS2, WS2, MoSe2, WSe2, BP, TiS3, multilayer graphene, and MoTe2 [29][31][32][33][34]. A
  • conductivity of the sensor device, similar to that observed for other 2D materials such as SnSe2 [35], MoS2 [36], BP [26], and MoSe2 [37]. Figure 7b shows a typical current–time (I–t) plot where cycles of 11.3% and 97.3% RH levels were used to calculate the response and recovery time. The response and recovery
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
PDF
Album
Review
Published 14 Nov 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • , e.g., MoS2, WS2 [16][17], black phosphorus (BP) [18]), and topological insulators (TIs, e.g., Bi2Te3, Sb2Te3 [19][20], graphitic carbon nitride (g-C3N4) [21]). In the PQS regime, such structures enable the generation of nanosecond pulses at high repetition rates (up to MHz) and they are attractive for
  • commercial graphene-SA containing several (n = 3) carbon layers, a SA based on randomly oriented SWCNTs in a PMMA film [32], and a few-layer MoS2 SA [31]. One can observe a similar broadband absorption feature for the ZnO NRs as in these reference SAs. The photoluminescence (PL) spectrum of ZnO NRs grown for
  • much lower compared, e.g., with the few-layer MoS2 SA (0.5 MW/cm2) [31] which can be due to the at least partial coupling of light inside the NRs thus enhancing the light–matter interaction. Previously, the absorption saturation of ZnO nanocrystals in a polymer film was studied [26] at 1.560 µm also
PDF
Album
Full Research Paper
Published 23 Oct 2018

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • instance, MoS2[32] or h-BN [33]) and the experimentally reported values lie in a wide range [32]. Typically, the dielectric constant of monolayer materials is expected to be smaller than their 3D counterparts, as their screening capabilities are reduced at low dimensionality [29][33]. All this variability
  • . Using meff and ε for MoS2 and h-BN in Table 1, we obtain = 2.2–2.7 Å and = −1.59 eV, and = 0.5 Å and = −15 eV. (b) Energies for two electrons bound to a donor pair as a function of the inter-donor distance R, see Supporting Information File 1 for the definition of the wave function. (c) Exchange J
  • in effective units as a function of the separation between donors. For R = 2a*, J = 0.156 Ry*. For this distance, assuming ε = 5 and using the effective masses in Table 1, JZnS = 16 meV, JCdS = 14 meV, JCdSe = 11 meV, JSiC = 55 meV. Using meff and ε for MoS2 and h-BN in Table 1, we get = 50–60 meV
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
PDF
Album
Review
Published 21 Aug 2018
Other Beilstein-Institut Open Science Activities