Search results

Search for "PTCDA" in Full Text gives 28 result(s) in Beilstein Journal of Nanotechnology.

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • Alfred J. Weymouth Emily Roche Franz J. Giessibl Institute of Experimental and Applied Physics, Department of Physics, University of Regensburg, 93053 Regensburg, Germany 10.3762/bjnano.13.131 Abstract When perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) is deposited on the Ag(111) surface
  • gas (2DEG). We investigated mixed islands of PTCDA and copper phthalocyanine (CuPc) to study the change in the electronic state with the addition of an electron donor. We no longer observe a 2DEG state and instead identify states at 0.46 and 0.79 V. While one state appears in dI/dV images as an array
  • of one-dimensional quantum wells, our analysis shows that this state does not act as a free electron gas and that the features are instead localized above individual PTCDA molecules. Keywords: AFM; copper phthalocyanine; dI/dV; PTCDA; STM; Introduction Organic semiconductor devices typically
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • otherwise only achieved for multilayers on the bare Ni. On hBN/Cu(111), Zimmermann et al. [87] could visualize the molecular orbitals of pyrene derivatives by STM at the submolecular level, while Brülke et al. [88] measured the fluorescence of monolayer perylenetetracarboxylic dianhydride (PTCDA), which is
  • molecules from a semiconducting substrate is discussed for the example of both insulating CaF2 thin films on Si(111) [91] and hydrogen passivation of Ge(001) surfaces [92]. In the first case, three scenarios were compared: PTCDA on Si, on a thin CaF2, and on a thicker CaF2 layer. While isolated PTCDA
  • molecules were pinned to defects on Si and also on the thin CaF2 layer, PTCDA was physically decoupled via the thicker CaF2 films and self-assembled into small islands. For FePc on H-passivated Ge(001), efficient physical decoupling facilitated the growth of large islands with upright oriented molecules
PDF
Editorial
Published 23 Aug 2021

Determining amplitude and tilt of a lateral force microscopy sensor

  • Oliver Gretz,
  • Alfred J. Weymouth,
  • Thomas Holzmann,
  • Korbinian Pürckhauer and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2021, 12, 517–524, doi:10.3762/bjnano.12.42

Graphical Abstract
  • , in principle, to any surface feature such as, for example, a commonly used PTCDA molecule or a surface defect. The fitting of the parameters for the 2D current map method was done by a fitting algorithm written in MATLAB, and details of the algorithm were explained. A MATLAB file is included in
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • surfaces, since those semiconductors are at the foundations of traditional electronics. Finally, hydrogen-passivated semiconductors may also provide sufficient isolation for organic molecules to allow for the growth of molecular crystals. It has been already shown that PTCDA molecules form ordered islands
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • organic molecule 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) from the supporting Cu(111) surface by Raman and fluorescence (FL) spectroscopy. The Raman fingerprint-type spectrum of PTCDA served as a monitor for the presence of molecules on the surface. Several broad and weak FL lines between
  • 18,150 and 18,450 cm−1 can be detected, already from the first monolayer onward. In contrast, FL from PTCDA on a bare Cu(111) surface is present only from the second PTCDA layer onward. Hence, a single layer of hBN decouples PTCDA from the metal substrate to an extent that a weak radiative FL decay of
  • -perylene tetracarboxylic dianhydride (PTCDA); Raman spectroscopy; Introduction In recent years, two-dimensional materials (2DMs) have been established as a highly interesting field of studies, both in regard to their fundamental physical properties as well as their potential for technical applications [1
PDF
Album
Full Research Paper
Published 03 Nov 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • functionality. Here, the molecular properties of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) adsorbed on insulating CaF2 thin films that were grown on Si(111) surfaces are studied. Scanning tunnelling microscopy is used to compare the properties of PTCDA molecules adsorbed on a partly CaF1-covered Si
  • on CaF2(111) of nearly flat-lying PTCDA molecules with two oxygen atoms displaced towards calcium surface ions. This geometry is in agreement with the experimental observations. Keywords: calcium difluoride; decoupling; insulating thin film; 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA
  • of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on metal [6][7][8][9][10][11][12], semiconductor [13], and insulator surfaces [14][15][16][17][18][19], as well as the deposition on conducting surfaces covered by insulating thin films [20][21][22][23][24] or two-dimensional materials [25]. It
PDF
Album
Full Research Paper
Published 26 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • ][33], decouple perylenetetracarboxylic dianhydride (PTCDA) aggregates [34], study interfacial charge transfer in binary phthalocyanine arrays [35], probe vibronic conductance in oligophenylenes [36], and control the charge state of F16CoPc [37]. Studies focusing on the preparation of coordination
  • coverages of PTCDA and MnPc on the strongly corrugated hBN/Rh(111) support [21][22][80], with computational modeling showing PTCDA rings positioned above the N sites of a hBN flake [14]. In contrast, no preferred orientations have been identified for a hydrocarbon lander molecule (i.e., DBP) on hBN/Pt(111
  • , Supporting Information File 1). In contrast to recent reports on F16CoPc/hBN/Cu(111) [37] and PTCDA/NaCl/Ag(111) [83], an additional effect of the molecular aggregation and packing density, namely the screening by neighboring molecules, yielding a reduction of the STS-derived HOMO–LUMO gap, did not seem to
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • (above 5 V) leads to a lateral movement of the molecules or to their distortion. The conformational switching of SnPc molecules was previously discussed for the Ag(111) surface [21], the InAs(111) surface [26] and a 1 ML PTCDA/Ag(111) interface [27]. Using a C60-functionalized tip, successful switching
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Ion mobility and material transport on KBr in air as a function of the relative humidity

  • Dominik J. Kirpal,
  • Korbinian Pürckhauer,
  • Alfred J. Weymouth and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2019, 10, 2084–2093, doi:10.3762/bjnano.10.203

Graphical Abstract
  • as the imaging of single pentacene molecules by Gross et al. [12], intramolecular resolution of PTCDA at room temperature by Huber et al. [13], as well as the capability to perform non-destructive measurements on sensitive biological samples in air and in a liquid [14]. Moreover, it has been shown
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • differs from that of other organic molecules that exhibit attractive intermolecular interactions, e.g., PTCDA (perylenetetracarboxylic dianhydride) on Ag(100) [42], and for which the formation of ordered islands is observed already at very small coverages. In the present case of presumably weak or
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • made accessible for structures prepared by thermal evaporation [44][45][46][47][48] or lithographic techniques [49][50][51][52][53][54]. Alternatively, molecular-scale structures such as PTCDA [55], polyfluorene chains [56], graphene nanoflakes on graphene [57] or graphene nanoribbons (GNRs) on single
PDF
Album
Review
Published 16 Jul 2018

Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study

  • Hao Tang,
  • Nathalie Tarrat,
  • Véronique Langlais and
  • Yongfeng Wang

Beilstein J. Nanotechnol. 2017, 8, 2484–2491, doi:10.3762/bjnano.8.248

Graphical Abstract
  • peripheral phenyl rings acting as spacer that mitigate the coupling between the central macrocycle and the surface. X-ray standing wave measurements (XSW) on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) and on diindoperylene (DIP) on Au(111) report distances slightly lower (3.27 Å and 3.22 Å
  • such as PTCDA or DIP that their interaction with coinage-metal surfaces are different and the binding strength increases in the form of Au < Ag < Cu while the molecule–surface distance decreases [20][21]. In order to verify this trend for FeTPP, calculations were performed on fcc, hcp, top and bridge
PDF
Album
Full Research Paper
Published 23 Nov 2017

Formation of ferromagnetic molecular thin films from blends by annealing

  • Peter Robaschik,
  • Ye Ma,
  • Salahud Din and
  • Sandrine Heutz

Beilstein J. Nanotechnol. 2017, 8, 1469–1475, doi:10.3762/bjnano.8.146

Graphical Abstract
  • films, which are amorphous on non-interacting substrates, by depositing the molecules on a 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) surface, leading to a transformation from paramagnetic to antiferromagnetic behaviour [5]. Another promising class of molecules are phthalocyanines (Pc) that
PDF
Album
Full Research Paper
Published 14 Jul 2017

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well. Keywords: dye molecules; perylene-3,4,9,10-tetracarboxylic
  • dianhydride (PTCDA); phtalocyanines; porphyrins; rutile; scanning probe microscopy; scanning tunneling microscopy (STM); titanium dioxide (TiO2); Introduction Today it comes as no surprise that photovoltaic devices can be made of materials other than silicon. Nanocrystalline materials accompanied by organic
  • In any discipline, experience is gained through studying prototypical systems. Among the organic dyes used for sensitization applications, there are many that are considered prototypical. Here we review experiments on three types of molecules: perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA
PDF
Album
Commentary
Published 09 Nov 2016

Optical absorption signature of a self-assembled dye monolayer on graphene

  • Tessnim Sghaier,
  • Sylvain Le Liepvre,
  • Céline Fiorini,
  • Ludovic Douillard and
  • Fabrice Charra

Beilstein J. Nanotechnol. 2016, 7, 862–868, doi:10.3762/bjnano.7.78

Graphical Abstract
  • -3,4,9,10-tetracarboxylic dianhydride (PTCDA), have become archetypes for photonic applications of dyes [12], for self-organized adsorption on various atomically flat surfaces [13], and for their combination. Indeed, optical differential reflectance spectroscopy [14], photoluminescence, or Raman diffraction
  • studies have evidenced optical responses attributed to strong interactions of PTCDA with metal [15][16] or semiconductor [17] substrates and between neighbouring molecules when deposited on a dielectric substrate [18][19] or in multilayer structures [20]. The optical effects of interactions between close
  • -packed PTCDA molecules deposited on epitaxial graphene have also been observed [21]. In turn, self-assembly of adsorbed conjugated molecules can influence the electronic properties of its substrate. Such a non-covalent functionalization is especially suitable in the case of graphene because of its
PDF
Album
Letter
Published 14 Jun 2016

Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

  • Philipp Leinen,
  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2015, 6, 2148–2153, doi:10.3762/bjnano.6.220

Graphical Abstract
  • advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface. Keywords: non-contact atomic force microscopy (NC-AFM); Oculus Rift; perylene-3,4,9,10-tetracarboxylic dianhydride
  • (PTCDA); scanning probe microscopy (SPM); scanning tunnelling microscopy (STM); single-molecule manipulation; virtual reality interface; Introduction The recently introduced scanning probe microscopy (SPM) technique of hand controlled manipulation (HCM) allows the operator of the SPM to manipulate
  • execution and comparison of many alternative tip trajectories. For its initial demonstration HCM was applied to the problem of extraction of single PTCDA molecules out of their commensurate monolayer grown on the Ag(111) surface [1][2][3]. Similar to the current study those experiments were performed with a
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • 10.3762/bjnano.6.155 Abstract Transformations of molecular structures formed by perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules on a rutile TiO2(110) surface are studied with low-temperature scanning tunnelling microscopy. We demonstrate that metastable molecular assemblies transform into
  • desired assemblies. Differences between PTCDA/TiO2(110) and PTCDA/TiO2(011) systems obtained through identical experimental procedures are discussed. Keywords: PTCDA, TiO2, rutile, self-assembly, STM; Introduction Molecular self-assembly appears to be a very powerful and versatile tool for the formation
  • even more evident when combined materials, such as organic molecules adsorbed on a metal oxide surface, are examined. Thus, we have decided to perform our research on such a model system, comprising perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules adsorbed onto the (110) face of rutile
PDF
Album
Full Research Paper
Published 10 Jul 2015

A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons

  • Ping Du,
  • David Bléger,
  • Fabrice Charra,
  • Vincent Bouchiat,
  • David Kreher,
  • Fabrice Mathevet and
  • André-Jean Attias

Beilstein J. Nanotechnol. 2015, 6, 632–639, doi:10.3762/bjnano.6.64

Graphical Abstract
  • , molecular, in-plane confined, self-assembly studies to graphene substrates. However, to date, the majority of the investigations deal with only a few of molecules: 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), phthalocyanine (and its metal coordination complexes), and C60 fullerenes [20]. Moreover
PDF
Album
Review
Published 03 Mar 2015

Advanced atomic force microscopy techniques II

  • Thilo Glatzel,
  • Ricardo Garcia and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 2326–2327, doi:10.3762/bjnano.5.241

Graphical Abstract
  • PTCDA islands [12]. Furthermore, the analysis of mechanical properties of either nanoparticles [13] or biological systems [14][15][16] is covered by several articles and reviewed by Cohen and co-workers [17]. Especially the application of advanced SPM techniques in biology provides exciting new results
PDF
Editorial
Published 03 Dec 2014

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • the organic layer. The molecular tilt angle increases with increasing films thickness, which was also shown for H2Pc on PTCDA by utilizing spectroscopic ellipsometry and magneto-optical Kerr effect spectroscopy (MOKE) [16]. According to Equation 2, only values between 0 and 2 are allowed for Aout/Ain
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • Philipp Leinen,
  • Alexander Grötsch,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 1926–1932, doi:10.3762/bjnano.5.203

Graphical Abstract
  • the potential energy surface that governs the interaction behaviour of the manipulated nanoscale object(s) is largely unknown. Keywords: atomic force microscopy (AFM); scanning tunneling microscopy (STM); single-molecule manipulation; 3,4,9,10-perylene tetracarboxylic acid dianhydride (PTCDA
  • archetypal organic semiconductor 3,4,9,10-perylene tetracarboxylic acid dianhydride (PTCDA) on a single-crystalline Ag(111) surface [10] (see Figure 1a). An Ag(111) single crystal was cleaned by repeated Ar-sputtering and annealing cycles. A small coverage of PTCDA molecules (less than 10% of a monolayer
  • voltage pulses of 3–6 V (applied to the sample) and by crashing 10–30 Å deep into the clean Ag(111) surface whilst simultaneously applying a voltage of 0.1–1 V. The cleanness of the tip was validated by STM imaging of the former lowest unoccupied molecular orbital (LUMO) of PTCDA [10] and spectroscopy of
PDF
Album
Supp Info
Video
Full Research Paper
Published 31 Oct 2014

The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

  • Christian Wagner,
  • Norman Fournier,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 202–209, doi:10.3762/bjnano.5.22

Graphical Abstract
  • -molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the
  • experimental data points is related to the sliding of the molecule across the surface. Keywords: atomic force microscopy (AFM); force-field model; 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA); qPlus; single-molecule manipulation; Introduction The problem of the adsorption of organic molecules
  • made on 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules [6] (cf. inset of Figure 1a). This system is considered to be an archetypal case of a functional organic adsorbate [1]. PTCDA interacts with surfaces via two distinct functionalities: the π-conjugated perylene core and the
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2014

Influence of the adsorption geometry of PTCDA on Ag(111) on the tip–molecule forces in non-contact atomic force microscopy

  • Gernot Langewisch,
  • Jens Falter,
  • André Schirmeisen and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2014, 5, 98–104, doi:10.3762/bjnano.5.9

Graphical Abstract
  • , Germany Institut für Angewandte Physik, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany 10.3762/bjnano.5.9 Abstract Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic–anorganic interface. In the past, scanning
  • tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic
  • temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in
PDF
Album
Full Research Paper
Published 27 Jan 2014

STM tip-assisted engineering of molecular nanostructures: PTCDA islands on Ge(001):H surfaces

  • Amir A. Ahmad Zebari,
  • Marek Kolmer and
  • Jakub S. Prauzner-Bechcicki

Beilstein J. Nanotechnol. 2013, 4, 927–932, doi:10.3762/bjnano.4.104

Graphical Abstract
  • -tetracarboxylic dianhydride (PTCDA) molecules are grown on a hydrogen passivated Ge(001):H surface. The islands are studied with room temperature scanning tunneling microscopy and spectroscopy. The spontaneous and tip-induced formation of the top-most layer of the island is presented. Assistance of the scanning
  • -tetracarboxylic dianhydride (PTCDA) molecular islands on a hydrogen passivated germanium surface, Ge(001):H, are presented. The application of bias voltage pulses in STM allows for the modification of the islands. We found that the presence of a scanning tip of the tunneling microscope facilitates and speeds the
  • impossible. At the high coverage, however, the accumulation of the PTCDA molecules is dominated by molecule–molecule interactions and molecular islands are formed. The islands grow in the Volmer–Weber mode. The density of the islands is 2.5 × 109 cm−2 for coverage of 0.7 ML. Approximately 60% of the islands
PDF
Album
Full Research Paper
Published 18 Dec 2013

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • sample surface. Force fields have now been recorded on NiO(001) [10][12][13], MgO/Ag(001) [14], NaCl(001) [15][16], Si(111)-(7×7) [17][18][19], HOPG [20][21], KBr(001) [9][22][23], Cu(111) [24], and CaCO3() [25] surfaces, as well as single molecules of PTCDA [26][27], pentacene [28], CO [29], C60 [30
PDF
Album
Full Research Paper
Published 11 Sep 2012
Other Beilstein-Institut Open Science Activities