Search results

Search for "activity" in Full Text gives 670 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • constant, respectively; γ = 1/2 for materials with direct bandgap and γ = 2 for semiconductor materials with an indirect bandgap. PEC activity evaluation The PEC water splitting efficiency of the materials was evaluated through a three-electrode PEC cell using a Biologic SP-200 potentiostat. The three
  • carrier concentration in MoS2/TNAs sample such in Figure 4. The mechanism for the enhanced activity of the heterojunctions can be explained by the Mott–Schottky results in Figure 5b,c. Generally, all samples show positive slopes, which proves that they are n-type semiconductors [53]. Equation 2 shows the
  • consistent with the previous results from EIS analysis and the Mott–Schottky results (Figure 5). The PEC activity of MoS2/TNAs in this study is higher than that of MoS2/TNAs synthesized by using a PVA binder agent in [36]. However, the direct combination of g-C3N4 with TNAs at a relatively high fabrication
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • SEM reveals the maximum size of the particles. The catalytic activity of commercially available M1 and M2 was evaluated through the photocatalytic degradation of phenol and DBMP. The photocatalytic activity was compared with the efficiency of ozonolysis. The photocatalytic efficiency is improved by
  • those for degradation. The degradation activity of DBMP was in the order of M2 > M1 > O3 > photolysis, and the same order was observed for the generation of bromide anions (Figure S2, Supporting Information File 1). The higher yields of bromides in the case of photocatalysis revealed the contribution of
  • . Photocatalytic degradation of phenols The photocatalytic activity of M1 and M2 was evaluated by the photocatalytic degradation of PhOH and DBMP. First, 750 cm3 (1.064 × 10−3 mol·L−1) of aqueous phenol solution was placed into the reactor. The pH of the solution was adjusted to 8 ± 0.1 with 0.1 mol·L−1 NaOH. Then
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • under solar irradiation. Keywords: multi-wall carbon nanotubes (MWCNTs); nanomaterials; photoelectrochemical; TiO2; water splitting; Introduction TiO2 is an excellent photochemical catalyst for environmental and chemical applications due to its good activity regarding numerous reduction and oxidation
  • the photocatalytic performance [4][5]. Because TiO2 only exhibits photochemical activity under UV excitation, which accounts for a small fraction (ca. 4%) of the solar energy, numerous modification methods such as doping with nonmetals, coupling with other catalysts, and attaching to supports have
  • the photoelectrochemical activity in aqueous environment [18][19][20]. Figure 4 shows the EDX spectra of MWCNTs and the TiO2@MWCNTs nanocomposite. The EDX spectrum for TiO2@MWCNTs confirms the presence of Ti, which accounts for 28.76 wt %. Small amounts of Fe, Al, and Si exists in as-synthesized
PDF
Album
Full Research Paper
Published 14 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • and anticancer properties of AgNPs synthesized from pineapple peel. The authors reported a favorable antimicrobial activity at low concentrations of AgNPs. Das et al. [17] found that AgNPs synthesized in the same way have high antidiabetic potential and high cytotoxicity against HepG2 cancer cells in
  • conducted by monitoring biosynthesis temperature, considering that this variable has an important influence on the formation of nanoparticles. To verify the biological behavior of the obtained Ag/AgCl nanoparticles, their cytotoxic activity in the MCF-7 breast cancer cell line was investigated. The novelty
  • the obtaining of metallic Ag nanoparticles combined with AgCl, where AgNPs were formed by reducing compounds of the extract. Thus, the formation of AgCl was due to the availability of chlorine salts in pineapple peels. The third novelty shown in this work is that the cytotoxic activity of Ag/AgCl
PDF
Album
Full Research Paper
Published 13 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • addition of different dopants to the glass can enhance the osteogenesis (Mg, Sr, Fe, and Zr) or can yield particular properties such as angiogenesis (Cu and Co) and antimicrobial activity (Ag, Zn, Ce, Ga, and Cu). Also, dopants can change the glass solubility [13][15][16][17][18][19]. The presence of the
  • one hand, it induces antibacterial activity, and, on the other hand, it promotes the formation and mineralization of bone tissue [19][32]. The HA-BG composites investigated in this work contained two types of HA, obtained either by the sol–gel method (HAG) or by the precipitation method (HAP). It was
  • shown that HA resulting from the two methods significantly differs regarding the crystallite form and size, stoichiometry, surface activity, and Ca/P ratio [33][34]. Therefore, it was of interest to compare the influence of the two different types of HA on the overall behavior of the HA-BG composites
PDF
Full Research Paper
Published 12 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • surface-to-volume ratio [37][38][43][44][45][46]. Biomolecules such as DNA may readily modify AuNPs by adding thiol and amine groups via Au–S or Au–N links without losing their activity [38][47]. In electrocatalytic applications, the combination of carbon-based materials with metal nanoparticles has been
  • surfaces were 31.55, 26.36, and 26.21 mA, respectively. This finding proves that the AuNPs/Gr nanocomposite is suitable for electrochemical analysis and enhances the electrocatalytic activity by facilitating electron transfer in the redox process [54]. Bare SPCE and modified SPCE surfaces were examined
  • it shows a significant sensitivity when modified with the AuNPs/Gr nanocomposite, which is also corroborated by CV and DPV results. These findings imply that electrode modification with AuNPs/Gr enhances electrocatalytic activity. Many researchers have reported a similar shape of the Nyquist plot
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • effects in comparison to neat gold nanoparticles. To further improve the photothermal activity, we introduced the organic photothermal agent boron dipyrromethene (BODIPY) to Au-LNPs for synergistic PTT. Au- and BODIPY-grafted LNPs (AB-LNPs) were formed by simply mixing Au-LNPs with BODIPY. The BODIPY
  • activity of AB-LNPs. Anti-proliferative activity of AB-LNPs MTT assay was employed to investigate the viability of 4T1 cells treated with BDP, Au-LNPs, and AB-LNPs for 24 h with or without laser irradiation (680 nm, 0.5 W/cm2, 60 s). A laser wavelength of 680 nm was used for PTT in this study. BDP showed
  • comparison to 30 μM of BDP and 30 μM of Au-LNPs (Figure 5d). The results obviously demonstrated that AB-LNPs under laser irradiation could trigger the photothermal activity of BDP and Au-LNPs to exert synergized PTT. To prove the synergistic effect of combining the BDP and Au-LNPs, we also calculated the
PDF
Album
Full Research Paper
Published 02 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • -synthetically from 10-deacetyl-baccatin isolated from the Taxus family (T. baccata and T. brevifolia). It is a potent and long-known anticancer agent that acts in the metaphase-anaphase process of cancer cells, exerts a cytotoxic effect on microtubules that are vital for mitotic cellular activity, and prevents
  • the proliferation of cancer cells [32][33][34]. Its potent activity against a wide spectrum of cancers such as colon cancer, gastric cancer, breast cancer, recurrent ovarian cancer, and non-small cell lung cancer has been elucidated by in vitro and in vivo studies [35]. Its poor water solubility
  • [15]. Manca et al. stated that using CS as coating material significantly increased the mucoadhesive activity of the formulations by positively changing the surface charge of the NPs [54]. Cell culture models are not precise enough to evaluate the interaction between NPs and mucus layer. Since the
PDF
Album
Full Research Paper
Published 23 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • absorb LED light irradiation with a light harvesting efficiency of ≈90% and a direct bandgap of 2 eV. The introduction of carbon into the HBN lattice led to a significant change in the electronic environment through the formation of C–B and C–N bonds which resulted in improved visible light activity
  • shows zero activity in the visible region. Keywords: carbon modification; hexagonal boron nitride (HBN); LED light; phenol; photocatalysis; Introduction Hexagonal boron nitride (HBN) commonly known as white graphene belongs to a class of two-dimensional layered crystalline materials. It comprises
  • conditions. The linear sweep voltammetry (LSV) studies were conducted under both dark and light conditions with a scanning speed of 5 mV/s. Photocatalytic activity The LED-light-driven photocatalysis experiments were performed in a 250 mL conical flask containing 50 mg of the as-synthesized material and 200
PDF
Album
Full Research Paper
Published 22 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • distribution of the metallic element determines the structural characteristics of the resulting BMNPs (i.e., alloy, core–shell, or intermediate stages) [6]. The scientific value of noble MNPs and BMNPs has been recently highlighted by the development of novel antimicrobial agents with remarkable activity
  • against bacteria, protozoa, and viruses [7][8][9][10]. They have been proposed to complement traditional antimicrobials, either to increase their potency or broaden their activity spectrum. Furthermore, their combination with classical antibiotics is considered a promising strategy to combat the ongoing
  • structure. In this case, the inner Au component favors cellular entry (typically via endocytosis) and slow release of the Ag+ ions, to which the overall biological activity of the system is ascribed. It all comes down to greater system biocompatibility [2]. Au/Ag BMNPs with a core–shell architecture can be
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • performance studies. The fabricated QDSC have superior electrochemical activity with a photoconversion efficiency of 4.91%. Keywords: alloyed QDs; photoconversion efficiency; photovoltaic performance; quantum dots; Introduction Human life depends on various forms of energy. Approximately 13 terawatts of
  • electrochemical activity. It can boost charge recombination and transport electrons readily, which contributes to the enhanced performance of the QDSC. The J–V curves of the AZGSSe/TiO2 photoanode-based QDSCs are displayed in Figure 8 and the corresponding photovoltaic parameters Jsc, Voc, and FF are 14.20 mA/cm2
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • than Bi5+. The earlier compounds have been examined more thoroughly than the latter. The overlap of O 2p and Bi 6s orbitals in the valence band (VB) of Bi3+-containing compounds improves photogenerated charge mobility and, hence, improves photocatalytic activity [22][23]. Furthermore, except for BiOF
  • times greater CO2 adsorption and enhanced light absorption. The enhanced properties were reflected in the photocatalytic activity, resulting in a rate of methanol synthesis of 75 mol·g−1·h−1, which was much greater than the rate produced by the unaltered Bi2WO6. As a result of the decrease in
  • obtained. They found that Bi5O7Br effectively converts molecular oxygen to superoxide radicals and hydroxyl radicals in visible light. Under UV–vis irradiation, Bi5O7Br showed a higher photocatalytic activity in the degradation of rhodamine B (RhB) dye than BiOBr. The addition of Bi5O7Br photocatalysis to
PDF
Album
Review
Published 11 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • devices, radioactive cooling devices, field-effect transistors, infrared acousto-optic deflectors, and even for antifungal activity [1][2][3][4][5][6][7]. Several chemical and physical methods have been recently developed to synthesize Te-based nanostructures, such as monolayers (MLs), nanoparticles (NPs
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • changes in the biological activity of proteins, so they are widely used as an immunolabeling probe in immunocytochemistry, and with the rapid development of molecular biology, colloidal gold labeling techniques are used as a means to perform precise localization of biological macromolecules such as cell
  • . Karg et al. [50] proposed a method that could develop the colloidal probe technique in the direction of electrochemistry. This preparation method allows the selection of many colloidal particles containing electrochemical activity as probes. The colloidal gold particles in the experiments based on this
  • colloidal gold probes, and subjected to an immunoassay. The activity of the colloidal gold probe was determined by immunofiltration. The results showed that the colloidal gold probe was highly specific when applied to the immunodiafiltration method, and positive samples could be determined by direct color
PDF
Album
Review
Published 03 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • facilely prepared by post-modification of UiO-66-NH2 with chiral tartaric acids and coated on the surface of the QCM electrode as a chiral selector for enantioselective adsorption of a specific Cys enantiomer. This sensing system showed highly enantioselective activity and an enantioselective factor of up
  • retain the initial orientation and the natural activity of the insulin molecules. Conversely, the weak interaction of the insulin monomer on the L-surface makes it hard to maintain its initial helical arrangement and it only unfolds to form the oligomer. Moshe et al. fabricated chiral TiO2 films of [Ti{N
PDF
Album
Review
Published 27 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • dissolution, approximately 30 s, in which the active substance was completely released, followed by a rapid onset of action. At the same time, it was emphasized that the manufacturing process did not reduce the antifungal activity of the drug [176]. Shi et al. proposed PLA/HA MNs for the ocular delivery of
PDF
Album
Review
Published 24 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • and urea and, subsequently, characterized. Charge transfer dynamics in the heterojunction and band structure were investigated to understand the effect of the heterojunction on the photocatalytic activity. Finally, the photocatalytic pathway of the MgO@g-C3N4 heterojunction was studied via trapping
  • photocatalytic activity of as-prepared MgO@g-C3N4 was evaluated by monitoring NO degradation. The photocatalytic NO removal experiments were performed using a 4.5 L reaction chamber and a Xenon lamp (300 W) as the visible light source. The initial NO concentration was 500 ppb, the flow rate was 1.5 L·min−1, and
  • bandgap reduction can be attributed to Mg−N bonds in the MgO@g-C3N4 materials, which promote charge transport, thus, increasing the photocatalytic efficiency [33][51]. Generally, smaller bandgaps lead to better light absorption, indicating the high photocatalytic activity of MgO@g-C3N4 under visible light
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • that the prepared ZnO material excellently removed MB and MO (cinitial = 10 mg/L) with efficiencies of 100% and 82.78%, respectively, after 210 min under UV radiation with a ZnO NP dose of 2 g/L. The photocatalyst activity of the synthesized material was also tested under visible light radiation with
  • the same conditions; however, it achieved lower efficiencies. In addition, ZnO NPs were also tested regarding their antibacterial activity, and the results showed that the prepared ZnO samples had the highest (i.e., 100%) antibacterial efficiency against E. coli. Keywords: green synthesis; methylene
  • photocatalysts. ZnO has a higher quantum efficiency than that of TiO2 since it absorbs more energy in the UV region [4][5][6][7]. Furthermore, ZnO is a low-cost photocatalyst with high photocatalytic activity, nontoxicity, light sensitivity, and stability [8][9][10]. The photodegradation of organic substances by
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • had surface groups such as carboxyl and hydroxy groups. Aloe vera has intrinsic antimicrobial properties, so the bactericidal activity of these CDs was investigated by the agar well diffusion method, and the sensing ability towards Fe3+ was also reported [67]. Kavitha et al. used date palm fronds with
  • confirmed the catalytic activity of the product. Adsorption of heavy ions from water samples was investigated to find the activity on the surface of the product, and it was found that the mentioned CDs can remove Cd2+ ions by 37% and Pb2+ ion by 75% from the water sample [111]. Watermelon juice-based N-CDs
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • phosphatase, bone morphogenic protein, runt-related transcription factor-2, bone sialoprotein, and osteocalcin. In vitro and in vivo studies highlight the scientific findings of antibacterial activity, tissue integration, stiffness, mechanical strength, and degradation behaviour of composite materials for
  • tissue engineering applications. Keywords: antibacterial activity; biomimetic materials; bone graft substitutes; chitosan; gold; osteoinductive; silver; Introduction Bone-related defects and diseases are a serious concern to the life of patients [1]. Autografts, allografts, and synthetic grafts are
  • mechanical strength and cell adhesion. Importantly, the developed biocomposites have excellent antimicrobial activity [111]. AgNP-loaded fibrillar collagen–chitosan matrix was used for further biomineralisation using a simulated body fluid (SBF) solution. The developed composites show better mineralisation
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • solvothermal method to obtain a novel 0D/3D heterojunction Bi2O3/MIL101(Fe) (BOM). The morphology and optical properties of the as-prepared Bi2O3/MIL101(Fe) composite were characterized. The photocatalytic activity of the synthesized samples was evaluated by degrading chlortetracycline (CTC) under visible
  • -light irradiation. The obtained BOM-20 composite (20 wt % Bi2O3/MIL101(Fe)) exhibits the highest photocatalytic activity with CTC degradation efficiency of 88.2% within 120 min. The degradation rate constant of BOM-20 toward CTC is 0.01348 min−1, which is 5.9 and 4.3 times higher than that of pristine
  • Bi2O3 and MIL101(Fe), respectively. The enhanced photocatalytic activity is attributed to the formation of a Z-scheme heterojunction between Bi2O3 and MIL101(Fe), which is conducive to the rapid separation of photogenerated carriers and the enhancement of photogenerated electron and hole redox capacity
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • the oxygen reduction reaction (ORR) in alkaline medium. Varying the Ag fraction in copper cobalt oxide has a significant influence on the ORR activity. At a ratio of 2:1:1, AgCuCo oxide NPs on rGO displayed the best values for onset potential, half-wave potential, and limiting current density (Jk) of
  • 0.94 V vs RHE, 0.78 V, and 3.6 mA·cm−2, respectively, with an electrochemical active surface area of 66.92 m2·g−1 and a mass activity of 40.55 mA·mg−1. The optimum electrocatalyst shows considerable electrochemical stability over 10,000 cycles in 0.1 M KOH solution. Keywords: copper cobalt oxide NPs
  • electrocatalysts [14][18][19]. Oxophilicity, agglomeration, and poor chemical stability of Ag require the amalgamation of Ag with other metals for a better optical and catalytic activity [20]. Chen et al. synthesised Ag nanoscale alloys containing metals such as copper, cobalt, iron, and indium via pulse film
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • -based materials are interesting candidates due to their natural origin, biological activity, and structural properties. Silk materials, in particular those made of spider silk proteins and their recombinant counterparts, are characterized by extraordinary properties including excellent biocompatibility
  • through direct antimicrobial activity, (2) inhibiting biofilm-specific signalling pathways, and (3) modulating the innate immune responses resulting in the inhibition of potentially harmful inflammation reactions [85][86][88]. In order to highlight the multifaceted nature of AMPs, the term host defense
  • its minimum inhibitory concentration (MIC) for planktonic organisms [94], and, subsequently, it was demonstrated that a distinct subset of HDP peptides can be addressed specifically as antibiofilm peptides, with similar overall amino acid compositions but distinct structure–activity relationships
PDF
Album
Review
Published 08 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • belong to a sub-category of natural or semi-synthetic polyketides. Tetracycline consists of a linear tetracycline nucleus, exhibiting antibacterial activity, which may affect the biological system after discharging [8]. As the population has become dense, vigorous industrial activities, and the animal
  • )3 precipitation, which is called iron sludge. It might decrease the activity and lead to the termination of the Fenton reaction. Second, ferric ions might easily cause complicated chain reactions with organic matters, resulting in the formation of Fe3+ complexes or other intermediate products. Such
  • Fenton reaction, a photo-Fenton reaction excited by ultraviolet light or visible light can achieve a faster reaction rate and a complete degree of oxidation [19]. Besides, it shows a positive relationship between light intensity and photocatalytic activity. With the assistance of light irradiation, the
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • assembled vaccine particles showed improved immunogenicity. Moreover, the activity of the encapsulated OVA and CpG was maintained under enzyme incubation, heating treatment (60 °C for 12 h), or long-term storage (longer than six months) at 25 °C. The efficiency of this strategy encourages large-scale
  • networks were formed by densely packed monodispersed polystyrene spheres, ordered macropores could be created inside ZIF-8 single crystals or other coordination polymers (Figure 5) [117][118]. The inverse opal single crystals presented higher catalytic activity than microporous single crystals. These
  • cubic, and CsCl structures were all available [134]. In particular, the 2D assembly showed significant activity regarding the photooxidation of mustard gas [134]. The specific site of the coordination polymer crystals could be modified to generate patchy colloids. By selectively growing a thin layer of
PDF
Album
Review
Published 12 Aug 2022
Other Beilstein-Institut Open Science Activities