Search results

Search for "bioactivity" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • concentrations (5 mg/L and 25 mg/L) compared to free cymene. This suggests that the encapsulation influences the bioactivity, potentially because of improved dispersion and controlled release of cymene. Similarly, free myrcene exhibited a concentration-dependent efficacy. Myrcene NEs consistently outperformed
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • had a rounded bottom. The space between the pillars and holes were around 860 nm and 330 nm, respectively. The wettability of a surface is a good predictor of protein adsorption and bioactivity [20]. For the extracellular matrix protein laminin, good adsorption and cell growth have been found on
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • microbial strains S. aureus (Gram-positive) and S. typhi (Gram-negative) using the disk diffusion method at different pH values. To establish the bioactivity of the nanocomposite, antibacterial assays were also conducted in media with different pH values without the nanocomposite. These resulted in no
  • bioactivity against either of the strains, indicating that the observed bioactivity was due to the nanocomposite alone (Supporting Information File 1, Figure S1). Inhibition images and inhibition zone plots of AgNPs@Lac/Alg at different pH values are presented in Figure 9. The results show that the
  • surface properties of silver nanoparticles. The highest bioactivity was observed at pH 6. These findings suggest that the nanocomposite may be customized for specific applications in environmental and medicinal treatments, making it a promising material. Experimental Materials The following chemicals and
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • bioactivity. Thus, the encapsulation efficiency is improved compared to the approach using a direct contact of cells in a silica matrix. Encapsulated yeast produced ethanol over a period of several days, pointing out the useful biocatalytic potential of the approach and suggesting further optimization of the
  • results, yolk–shell microstructures embedded within a silica gel matrix appear as the most suitable candidates for robust, easy-to-handle biohybrid materials to retain the bioactivity of the encapsulated microorganisms. It should be considered that, although the viability in sepiolite–biopolymer materials
  • , indicating that product removal must be considered as a way to retain the material’s bioactivity. Conclusion The present contribution describes the application of the nanoarchitectonics concept to contribute to the development of new bio-inorganic systems based on the assembly of living unicellular
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • yield unusual physical properties. A recent review by Tsuji reports the realization of cryogenic properties at room temperature by chemical immobilization of molecular structures [94]. Functions such as optoelectronic properties and bioactivity of materials strongly depend on molecular structures
PDF
Album
Review
Published 03 Apr 2023

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • , which exhibits a strong correlation with porosity, as well as on the mineralization capability and cell viability due to the different dissolution rate. Keywords: bioactivity; hardness; microstructure; nanocomposites; porosity; Introduction Within the last decades increasing emphasis is placed on the
  • bioactivity of the glass, which has a higher dissolution rate and promotes the formation of a carbonated hydroxyapatite (CHA) layer on its surface, which is responsible for implant–bone bonding [6]. The composition of the most famous bioglass, 45S5 Bioglass [7], includes the principal elements of the bone, Ca
  • -12MgO-8K2O-40P2O5-20SiO2-5ZnO-5CeO2 (mol %). This composition was chosen in order to combine high solubility of the glass with increased bioactivity, due to the high fraction of P2O5 and, simultaneously, the rather high fraction of SiO2. The inclusion of magnesium and potassium in conjunction with the
PDF
Full Research Paper
Published 12 Dec 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • growth at 25 µg/mL. The bioactivity of the composites was evaluated by simulation studies of body fluids. The results show that the composites can form hydroxyapatite bone minerals crystals in a ratio of Ca/P 1.67 [70]. Huang et al. (2017) have created a zinc-incorporated chitosan/gelatin nanocomposite
  • min [68] (Figure 4). Cancian et al. (2016) developed a novel bioactive scaffold based on a thermosensitive chitosan hydrogel. In this work, carbon nanotubes were used to stabilise the chitosan hydrogel, which offers mechanical strength and controlled release of protein therapeutics. The bioactivity of
  • in order to achieve vascularization and rapid tissue growth. To achieve tissue scaffold maturation, research into the development of scaffolds with supplied growth factors, programmable degradation rate, and good mechanical stiffness with improved bioactivity is required. Furthermore, mathematical
PDF
Review
Published 29 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • biomedicine and tissue engineering, since they exhibit promising chemical and physical properties, such as bioactivity, structural integrity, and cell stimulation [29][30]. Biomimetic materials modulating specific cellular responses and tissue regeneration have been developed by adjusting and modifying
PDF
Album
Review
Published 08 Sep 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • , microsphere structures can be independently used as carriers for the delivery of drugs and bioactive molecules to repair cartilage defects. The sustained release of PTH (1-34) from PLGA microspheres improved papain-induced defects in a rat model of OA and retained the bioactivity of the released peptide up to
  • nanotubes enhanced the biocompatibility and bioactivity of the PCL microspheres and provided an excellent biomaterial for cell differentiation and mineralization. In recent years, numerous efforts have been made to evaluate new candidate biomaterials to bridge the gap between material sciences and
PDF
Album
Review
Published 11 Apr 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • alginate, gelatin, and chitosan to enhance strength and durability [70]. In another strategy to improve the bioactivity of titania scaffolds, alkaline phosphatase (ALP) was functionalized onto 3D TiO2 scaffolds based on a simple dip-coating method. ALP catalyzes the hydrolysis of organic phosphate that
PDF
Album
Review
Published 14 Feb 2022

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • descriptor values for each new copy being randomly perturbed. This was successfully applied by Cortes-Ciriano and Bender to improve predictive performance for regression QSAR modelling of molecular bioactivity [36]. The effectiveness of this approach relies upon the similarity principle, that is, the
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • that could impact the performance of CUR-based nanosystems as a cancer therapy option are also considered. Due to the large body of evidence supporting the bioactivity of CUR, it has been widely considered a suitable molecule to be encapsulated in order to increase and target its delivery. The evidence
  • on this regard was reviewed by Naksuriya et al. [22]. Furthermore, it should be noted that the anticancer bioactivity of CUR is preserved when the parent compound is modified into derivative compounds, such as dimethyl CUR, metal–CUR complexes, tetrahydrocurcumin among others [23]. According to this
  • customizing the basic nanosystem. Although these are beyond the scope of the present work, their presence should be acknowledged as additional tools, which can be used to potentiate the already high bioactivity of CUR (and other molecules of interest) for anticancer or other health-promoting uses. It is also
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • functionality can influence the macromolecule bioactivity [8]. Controlled radical polymerization (CRP) techniques, such as atom transfer radical polymerization (ATRP), reversible addition fragmentation chain transfer (RAFT) polymerization, single-electron transfer living radical polymerization (SET-LRP) and
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Preservation of rutin nanosuspensions without the use of preservatives

  • Pascal L. Stahr and
  • Cornelia M. Keck

Beilstein J. Nanotechnol. 2019, 10, 1902–1913, doi:10.3762/bjnano.10.185

Graphical Abstract
  • Pascal L. Stahr Cornelia M. Keck Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany 10.3762/bjnano.10.185 Abstract Nanocrystals are used as universal approach to improve the bioactivity of poorly soluble active ingredients
  • oral or parenteral administration, nanocrystals can also be used to improve the bioactivity of poorly soluble active ingredients via other routes of administration. Examples include pulmonal, ocular or dermal application [8][9][10][11][12]. Nanocrystals can be produced by different methods. Examples
PDF
Album
Full Research Paper
Published 19 Sep 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • obtained from TEM images shown in Figure 3. Antimicrobial activity The improved bioactivity of nanometer-sized TiO2 particles is due to the area of contact and/or volume that is increased by reducing the particle size, specifically in this case the thickness (<100 nm), which allows greater interaction with
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • immobilization via covalent bonding is essential for the preservation of the enzyme structure and bioactivity [38][58]. The presence of GOx in the lumen of HNTs was also evidenced by measuring nitrogen adsorption/desorption isotherms (Figure S7, Supporting Information File 1). Compared to pristine HNTs, a
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • a chitosan 3D scaffold and enhanced its bioactivity, mechanical properties, and pore formation with GO for optimal bone tissue engineering [15]. Zhang et al. improved the chemotherapy efficacy of anticancer drugs with polyethyleneimine (PEI)-grafted GO [16]. Liu et al. discussed the antibacterial
PDF
Album
Full Research Paper
Published 18 Apr 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • combining titanium tetra-isopropoxide (TTIP) and the nucleobases thymine, uracil or adenine using the molecular layer deposition (MLD) approach. Such materials have potential as bioactive coatings, and the bioactivity of these films is described in our recent work [Momtazi, L.; Dartt, D. A.; Nilsen, O
  • enables control of cell–surface interactions, which plays a major role in controlling the bioactivity of solid surfaces. Biocompatibility can be enhanced by coating the surface using various thin film deposition techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD) or atomic
  • the initial 15 minutes of immersion in water, one may question the bioactivity of these films in comparison to pure TiO2. Clearly, these films obtained a lower density, amorphous structure (except for thymine deposited at 250 °C) with porous morphology, when compared to anatase TiO2. This is verified
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • (OH)2) is a calcium phosphate, structurally and chemically similar to the mineral phase of human bone and teeth. Due to its high biocompatibility and bioactivity, it has been successfully applied in the manufacturing of cosmetics and hygiene products, as well as in bone-tissue engineering and
PDF
Album
Full Research Paper
Published 27 Dec 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
PDF
Album
Review
Published 03 Apr 2018

Characterization of ferrite nanoparticles for preparation of biocomposites

  • Urszula Klekotka,
  • Magdalena Rogowska,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2017, 8, 1257–1265, doi:10.3762/bjnano.8.127

Graphical Abstract
  • advantage over nonmagnetic nanopartices due to the synergy of magnetic properties of the core particles with surface bioactivity or biomolecule recognition. The described hybrid system possesses very useful magnetic properties, which can be tunable and used as manipulation tools and, at the same time
PDF
Album
Full Research Paper
Published 13 Jun 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • post-synthesis reactions can be performed with the ELRs. As far as polymer bioconjugation is concerned, the thermoresponsivity of ELRs could be exploited to tune the bioactivity of biological components [13][31][32][33][34]. According to this idea, the use of recombinant DNA technology [23][35] allows
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017

Diffusion and surface alloying of gradient nanostructured metals

  • Zhenbo Wang and
  • Ke Lu

Beilstein J. Nanotechnol. 2017, 8, 547–560, doi:10.3762/bjnano.8.59

Graphical Abstract
  • amorphous titania. Furthermore, the formed titania showed an increased crystallinity and retained the nanoporous structure even after calcination at 600 °C [94]. These works indicated the possibility to improve the bioactivity of titanium bone implants and to accelerate osseointegration by introducing a
  • temperatures on materials with a preformed GNS surface layer than those of the conventional treatments on CG samples, such as nitriding, boronizing, and aluminizing. In addition, some other diffusion-related properties, such as bonding strength of coating on substrate, bioactivity of Ti and Ti alloys, and
PDF
Album
Review
Published 03 Mar 2017

3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

  • Aleksey A. Egorov,
  • Alexander Yu. Fedotov,
  • Anton V. Mironov,
  • Vladimir S. Komlev,
  • Vladimir K. Popov and
  • Yury V. Zobkov

Beilstein J. Nanotechnol. 2016, 7, 1794–1799, doi:10.3762/bjnano.7.172

Graphical Abstract
  • strategies to improve the bioactivity of the polymer-based materials is to incorporate some inorganic phase, such as CP particles, into their structure [9][10][11]. The 3D printing of these materials is usually achieved by simple ink jet processing of a mechanical mixture of starting ingredients (mineral
PDF
Album
Letter
Published 21 Nov 2016
Other Beilstein-Institut Open Science Activities