Search results

Search for "biosensors" in Full Text gives 130 result(s) in Beilstein Journal of Nanotechnology.

Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation

  • Roberta D'Agata,
  • Pasquale Palladino and
  • Giuseppe Spoto

Beilstein J. Nanotechnol. 2017, 8, 1–11, doi:10.3762/bjnano.8.1

Graphical Abstract
  • thorough understanding of the fundamental properties of bioconjugated AuNPs is of great importance for the design of highly sensitive and reliable functionalized AuNP-based assays. Keywords: biosensors; DNA; gold nanoparticles; nanoparticles aggregation; plasmonics; streptavidin; Introduction Gold
PDF
Album
Full Research Paper
Published 02 Jan 2017

A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a

  • Maryam Daneshpour,
  • Kobra Omidfar and
  • Hossein Ghanbarian

Beilstein J. Nanotechnol. 2016, 7, 2023–2036, doi:10.3762/bjnano.7.193

Graphical Abstract
  • method for sensitive, specific and non-invasive miRNA detections in early cancer diagnosis [8]. Biosensors are commonly defined as devices composed of recognition elements interfaced with a transducer, which finally transform a capture process into a detectable output signal. This signal, which is almost
  • always the result of a specific bio-interaction, could be received as an evident change in color, pH value, or electrochemical properties of the microenvironment [17][18]. Among all types of biosensors, electrochemical sensors have been of great interest particularly because they are simple, portable
  • been recently employed to improve the detection sensitivity and also the stability of the electrochemical biosensors. It has been shown that these approaches can strongly amplify the signal, extend the linear detection range, and lower the detection limit of the assay [19]. Nowadays, electrochemical
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2016

Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Fernando Martín-Pedrosa,
  • José Antonio De Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2016, 7, 1948–1959, doi:10.3762/bjnano.7.186

Graphical Abstract
  • biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained. Keywords
  • character which is an intrinsic semiconductor) [9][16][17][18]. On the other hand, enzymatic electrochemical biosensors based on phenol oxidases are a good alternative to analyze phenols due to their high sensitivity and selectivity. Tyrosinase oxidizes monophenols and o-diphenols to the corresponding
  • electron mediators to facilitate the transfer of electrons from the enzyme to the electrode [20]. PEDOT/PSS is becoming popular as an electron mediator in biosensing [21][22]. Gold nanoparticles and phthalocyanines have also been positively demonstrated as electron mediators in tyrosinase biosensors [16
PDF
Album
Full Research Paper
Published 08 Dec 2016

Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring

  • Niina Halonen,
  • Joni Kilpijärvi,
  • Maciej Sobocinski,
  • Timir Datta-Chaudhuri,
  • Antti Hassinen,
  • Someshekar B. Prakash,
  • Peter Möller,
  • Pamela Abshire,
  • Sakari Kellokumpu and
  • Anita Lloyd Spetz

Beilstein J. Nanotechnol. 2016, 7, 1871–1877, doi:10.3762/bjnano.7.179

Graphical Abstract
  • Eitel reported a LTCC material as a substrate for biosensors that is regarded as biocompatible [22]. Also, from our experience, cell growth, at least over 24 h, seems to be fully compatible with the LTCC material [23]. We suggest that the previous statement about LTCC material being non-biocompatible
PDF
Album
Full Research Paper
Published 29 Nov 2016

Surface-enhanced infrared absorption studies towards a new optical biosensor

  • Lothar Leidner,
  • Julia Stäb,
  • Jennifer T. Adam and
  • Günter Gauglitz

Beilstein J. Nanotechnol. 2016, 7, 1736–1742, doi:10.3762/bjnano.7.166

Graphical Abstract
  • -enhanced infrared absorption (SEIRA); Introduction Optical biosensors play an important role in the detection and quantification of analytes. Among others, some applications include point-of-care testing (POCT), the monitoring of blood, urine, sudor and respiratory air, and the search for metabolites and
  • markers for many diseases. Optical biosensors are used in basic research and life science, for example, to study protein–protein interactions [1][2]. A subfield of optical biosensors are those operated through direct optical detection. Direct optical sensing relates to the detection of analyte molecules
  • many optical biosensors operating in the visible or near-infrared wavelength regimes with great success. Shifting the detection window to the mid-infrared (MIR) region has some advantages, but also creates many new problems to be solved. In his review article, Mizaikoff [5] asks the rhetorical question
PDF
Album
Full Research Paper
Published 16 Nov 2016

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • Christa Genslein Peter Hausler Eva-Maria Kirchner Rudolf Bierl Antje J. Baeumner Thomas Hirsch Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040 Regensburg, Germany Sensorik-ApplikationsZentrum, OTH Regensburg, Franz-Mayer-Str. 1, 93053 Regensburg, Germany
  • detection limits in the environmental interesting concentration is important for water safety and direly needed. Surface plasmon resonance spectroscopy (SPR) is a widely-used technique for quantifying and characterizing biomolecular interactions in biosensors for medical diagnostics, food safety and
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • [18] and biosensors [19]. To produce high-quality Ge particles packed into different matrices, various approaches are reported in scientific papers such as pulsed laser deposition [20][21], sol–gel [22], evaporation under vacuum [23], chemical vapor deposition [24], microwave-assisted heating [25
PDF
Album
Full Research Paper
Published 21 Oct 2016

Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

  • Silvia Varela-Aramburu,
  • Richard Wirth,
  • Chian-Hui Lai,
  • Guillermo Orts-Gil and
  • Peter H. Seeberger

Beilstein J. Nanotechnol. 2016, 7, 1278–1283, doi:10.3762/bjnano.7.118

Graphical Abstract
  • prepared under reflux using 1-thioglucose as reducing and stabilizing agent [24] but the resulting nanoparticles are too unstable to be used as biosensors [25]. In an effort to create monodisperse, stable and surface-functionalized gold nanoclusters, we explored 1-thioglucose as a stabilizing and reducing
PDF
Album
Supp Info
Letter
Published 08 Sep 2016

Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response

  • Morten Slyngborg,
  • Yao-Chung Tsao and
  • Peter Fojan

Beilstein J. Nanotechnol. 2016, 7, 914–925, doi:10.3762/bjnano.7.83

Graphical Abstract
  • implementations in various fields such as optics [1], improved photovoltaic devices [2], electronics [3], surface-enhanced infrared spectroscopy [4], Raman spectroscopy [5] and biosensors [6]. Planar chiral metamaterials (PCMs) have also attracted attention because of their negative refractive index [7][8] and
PDF
Album
Full Research Paper
Published 24 Jun 2016

Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles

  • Jacek Wojnarowicz,
  • Roman Mukhovskyi,
  • Elzbieta Pietrzykowska,
  • Sylwia Kusnieruk,
  • Jan Mizeracki and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 721–732, doi:10.3762/bjnano.7.64

Graphical Abstract
  • , varistors, TFT display windows and laser technology [5][6][7]. ZnO displays pyroelectric and piezoelectric properties, thanks to which it is used in electroacoustic devices [8]. It is a biocompatible material used for producing biosensors and in drug delivery applications [9]. Thanks to antibacterial
PDF
Album
Full Research Paper
Published 19 May 2016

Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

  • M. Fátima Barroso,
  • M. Alejandra Luna,
  • Juan S. Flores Tabares,
  • Cristina Delerue-Matos,
  • N. Mariano Correa,
  • Fernando Moyano and
  • Patricia G. Molina

Beilstein J. Nanotechnol. 2016, 7, 655–663, doi:10.3762/bjnano.7.58

Graphical Abstract
  • , biodegradability and biocompatibility, so that they are utilized as versatile carriers in the fields of medical and analytical applications [1][2][3][4]. Several strategies employing vesicles in analytical fields have been reported, namely their use as signal amplifiers in the development of biosensors [3][5] to
  • fulfil performance criteria such as high sensitivity and low limit of detection. In this context, vesicles can be used in the construction of biosensors as supporting film to coat Au or Ag electrodes [3]. Self-assembly of nanoparticles onto organised systems combines the advantages of nanomaterials
  • inactivation and also in biosensors [12]. There are many properties that depend on the shape of the nanostructures. In this regard, there have been many studies with different ways to synthesize them [13][14][15][16][17]. For example, tips and edges located in the nanoparticles have regions of high electric
PDF
Album
Full Research Paper
Published 02 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • procedure might lead towards tight spatial control over the positions of the enzyme nanocarriers, which could be of high interest also for basic research on prerequisites for efficient enzymatic cooperation. Fast, sensitive and cost-saving biosensors often employ label-free read-out, in which signal
PDF
Album
Review
Published 25 Apr 2016

Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

  • Saurav Kumar,
  • Sudeshna Bagchi,
  • Senthil Prasad,
  • Anupma Sharma,
  • Ritesh Kumar,
  • Rishemjit Kaur,
  • Jagvir Singh and
  • Amol P. Bhondekar

Beilstein J. Nanotechnol. 2016, 7, 501–510, doi:10.3762/bjnano.7.44

Graphical Abstract
  • monolayer/multilayer of thin films, biosensors, and protein-based photonic devices [7][8][9]. The application of proteins for enhancement in signal transduction has been demonstrated by a number of researchers [1][10]. In general, the major drawbacks associated with proteins are their low stability, poor
PDF
Album
Full Research Paper
Published 04 Apr 2016

Organized films

  • Maurizio Canepa and
  • Helmuth Möhwald

Beilstein J. Nanotechnol. 2016, 7, 406–408, doi:10.3762/bjnano.7.35

Graphical Abstract
  • applications. This was most notable in the fields of molecular electronics and biosensors, which were emerging in those times and are now undergoing flourishing development. The interdisciplinary character of OFs, at the fortunately ill-defined borders between physical chemistry, chemical physics, biophysics
PDF
Editorial
Published 09 Mar 2016

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

  • Nik J. Walch,
  • Alexei Nabok,
  • Frank Davis and
  • Séamus P. J. Higson

Beilstein J. Nanotechnol. 2016, 7, 209–219, doi:10.3762/bjnano.7.19

Graphical Abstract
  • spectral range, the deposition of graphene layers on gold progressively enhances the plasmon resonance in TIRE Ψ spectra and caused an extra phase shift in TIRE Δ spectra. This phenomenon can be explored in the future for enhancing the performance of SPR-based biosensors. A schematic diagram of the
PDF
Album
Full Research Paper
Published 08 Feb 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • structures for biotechnological and biomedical applications, such as biosensors and carriers for drug delivery, led researchers to extend this technique beyond multilayer structure fabrication based on electrostatic interactions [7][8][9][10][11]. Over the years, other interactions such as covalent bonding
PDF
Album
Full Research Paper
Published 21 Jan 2016

Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

  • Sanda Boca,
  • Cosmin Leordean,
  • Simion Astilean and
  • Cosmin Farcau

Beilstein J. Nanotechnol. 2015, 6, 2498–2503, doi:10.3762/bjnano.6.259

Graphical Abstract
  • necessary, e.g., by introducing molecular recognition elements, in order to improve the selectivity of the sensor. Knowledge and technology existing on chemiresistive biosensors on one side and SERS detection on the other, can be commonly exploited for developing advanced dual sensors benefiting from the
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2015

Orthogonal chemical functionalization of patterned gold on silica surfaces

  • Francisco Palazon,
  • Didier Léonard,
  • Thierry Le Mogne,
  • Francesca Zuttion,
  • Céline Chevalier,
  • Magali Phaner-Goutorbe,
  • Éliane Souteyrand,
  • Yann Chevolot and
  • Jean-Pierre Cloarec

Beilstein J. Nanotechnol. 2015, 6, 2272–2277, doi:10.3762/bjnano.6.233

Graphical Abstract
  • immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic
  • biosensors) is a major challenge. Keywords: characterization; self-assembled monolayer; surface functionalization; ToF–SIMS; XPS; Introduction The orthogonal self-assembly of different molecules onto a patterned substrate was first demonstrated in 1989 by Whitesides and co-workers [1]. Recently, especially
  • with the development of localized surface plasmon resonance (LSPR) biosensors, this topic has become a major focus [2][3][4][5][6][7][8]. Indeed, LSPR transduction is expected to yield enhanced signal as compared to classical SPR transduction. However, the enhancement of the LSPR limit of detection is
PDF
Album
Letter
Published 01 Dec 2015

Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles

  • Wicem Argoubi,
  • Maroua Saadaoui,
  • Sami Ben Aoun and
  • Noureddine Raouafi

Beilstein J. Nanotechnol. 2015, 6, 1840–1852, doi:10.3762/bjnano.6.187

Graphical Abstract
  • peroxidase (HRP) enzyme yields biosensors, which have been applied for the selective electrochemical detection of human IgG (hIgG) or H2O2 as model analytes, respectively. Parameters such as the number of sweeps, amount of charge generated from the oxidation of the electrodeposited gold, time of incubation
  • substrates using various types of conductive inks can be considered as one of the most promising routes for the development of cost-effective, disposable biosensors [4]. Electrochemical (bio)sensors are inherently endowed with several attracting features which are useful for various technological
  • concentrations of, e.g., biologically active analytes and disease-related biomarkers [9][10]. Many electrochemical biosensors use ferrocene to transduce the biological reactions into readily measurable electrical signals [11][12]. For instance, Chen and Diao developed a glucose biosensor using gold nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2015

Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

  • Li-wei Liu,
  • Si-yi Hu,
  • Yin-ping Dou,
  • Tian-hang Liu,
  • Jing-quan Lin and
  • Yue Wang

Beilstein J. Nanotechnol. 2015, 6, 1781–1787, doi:10.3762/bjnano.6.182

Graphical Abstract
  • . In the last ten years, the study and development of QDs has rapidly progressed, and also influenced other research areas, such as nonlinear optics, plasmonics and biosensors. The special optical properties of QDs include good resistance to photo-bleaching, large absorption cross section, long
PDF
Album
Full Research Paper
Published 24 Aug 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • various fields of application, especially the biomedical sciences and biosensors. Keywords: Au/polymer/Fe3O4 nanocomposites; Au nanoparticles; cell viability; magnetic nanoparticles; N-trimethyl chitosan; Introduction Nanotechnology is the science of the fabrication of novel materials, devices and
  • engineering, as well as the in the design of sensors and biosensors [11][12][13][14][15][16][17]. Although all nanoparticles containing a magnetic core are considered as magnetic nanoparticles, the most commonly used are iron oxide nanoparticles, which are mostly synthesized in the form of magnetite (Fe3O4
  • particularly anticipated in the fields of electrochemical sensors and biosensors, where Au nanoparticles play a fundamental role as labels or platforms for immobilization. In this respect, our results suggest that enhanced signal amplification and increased magnetic separation efficiency are likely. In
PDF
Album
Full Research Paper
Published 03 Aug 2015

Scalable, high performance, enzymatic cathodes based on nanoimprint lithography

  • Dmitry Pankratov,
  • Richard Sundberg,
  • Javier Sotres,
  • Dmitry B. Suyatin,
  • Ivan Maximov,
  • Sergey Shleev and
  • Lars Montelius

Beilstein J. Nanotechnol. 2015, 6, 1377–1384, doi:10.3762/bjnano.6.142

Graphical Abstract
  • commercially available MCO, bilirubin oxidase (BOx), which is one of the main biocatalysts exploited today to design third-generation (i.e., direct electron-transfer-based), O2 reducing biodevices (e.g., O2-sensitive biosensors [18] and biocathodes of enzymatic fuel cells [19]). Contrary to many other MCOs
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2015

The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

  • Olga A. Guselnikova,
  • Andrey I. Galanov,
  • Anton K. Gutakovskii and
  • Pavel S. Postnikov

Beilstein J. Nanotechnol. 2015, 6, 1192–1198, doi:10.3762/bjnano.6.121

Graphical Abstract
  • due to their unique properties and the possibility of widespread applications [1][2]. The modification of magnetic materials may solve a number of high priority problems in medicine and pharmacology [3]. The principal biomedical applications of magnetic NPs include the design of biosensors [4
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2015

Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

  • Sini Kuriakose,
  • D. K. Avasthi and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2015, 6, 928–937, doi:10.3762/bjnano.6.96

Graphical Abstract
  • ], biosensors [22] and photocatalysts [23][24][25]. Nanocomposites consisting of nanostructures of ZnO and other metal-oxide semiconductors are being widely studied due to their improved physicochemical properties as compared to the individual counterparts. CuO, a p-type narrow band gap semiconductor, is
PDF
Album
Full Research Paper
Published 10 Apr 2015

Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

  • Syeda Arooj,
  • Samina Nazir,
  • Akhtar Nadhman,
  • Nafees Ahmad,
  • Bakhtiar Muhammad,
  • Ishaq Ahmad,
  • Kehkashan Mazhar and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2015, 6, 570–582, doi:10.3762/bjnano.6.59

Graphical Abstract
  • antibacterial properties [12][13], are used in the cosmetics industry [14][15], and are used as nanoscale biosensors [11] and as drug carriers [16][17]. These NPs are being increasingly recognized due to their differential activity against tumor cells while being non-toxic to normal cells [18][19][20][21][22
PDF
Album
Full Research Paper
Published 26 Feb 2015
Other Beilstein-Institut Open Science Activities