Search results

Search for "carbon" in Full Text gives 1096 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • succession. No further purification was carried out. A customized DC power supply was used to conduct the PEO. Figure 1 shows the schematic diagram of nanopore formation using PEO processing. The specimens and carbon tubes were utilized as the anode and cathode, respectively, and the electrolyte solution was
PDF
Album
Full Research Paper
Published 16 Oct 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • through a nucleophilic substitution at the phosphorous atom (SN2@P), in which hydroxy groups are the nucleophile as Liu et al. have reported [14], and not at aliphatic or aromatic carbon atoms (SN2@C) [14][39]. Furthermore, Cu2O NPs play an important role in the degradation of MP since hydroxy groups are
PDF
Album
Full Research Paper
Published 12 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • repulsive interaction between the two phenyl rings and the surface causes the molecule macrocycle to bend considerably. The largest surface height difference between carbon atoms of the macrocycle amounts to 0.8 Å. The calculated adsorption energy is Eads = −(Etotal − ECoDPP − ECoO/Ir) = 2.7 eV. The
  • corresponding STM simulation (Figure 7a, inset) agrees well with the symmetric dumbbell appearance in the experimental images. We also calculated the relaxed structure of 1 on 2BL CoO, where the molecule adopts a ruffled configuration [46]. We find that the maximum surface height difference between carbon atoms
  • of the macrocycle now amounts to only 0.5 Å while the bond length of the Co atom of 1 to the surface oxygen is now 3.0 Å. This means the distance between the molecule and the surface corresponds closely to the sum of the van der Waals radii of carbon and oxygen (3.2 Å). The binding energy is reduced
PDF
Album
Full Research Paper
Published 05 Oct 2020

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • , typically gold, using a sputter coater. Here we employ a similar technique, coating samples with either gold or platinum, or, in the case of analysis of platinum-group elements [15], carbon. This coating is removed by the action of the primary beam in the region of interest prior to analysis, allowing for
  • the removal of charge at the edges, but exposure of the sample surface within the analytical area. Figure 1 shows a mass spectrum taken on a natural zircon grain from NW Scotland, UK, mounted in epoxy resin with a carbon coating. Count rates before rastering with the primary beam are shown in red
  • , whilst count rates from the same sample area are shown in blue, after rastering with the neon beam to remove the carbon coating. The count rate increases dramatically after the removal of the carbon coating. For some mass/charge values, which were not present in the original mass spectrum, such as the
PDF
Album
Full Research Paper
Published 02 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • field [19]. An interesting strategy to increase the antimicrobial efficiency of metal-based nanoparticles is the use of silica and carbon compounds as delivery systems [20]. The broad range of metal-based nanoparticles, the types of NP synthesis, and their antimicrobial activity were further explored in
  • by using a 60 mg mL−1 SPION solution and applying an alternating current for 8 min. Silica- and carbon-derived nanoparticles Over the last years, several studies have revealed that silica nanoparticles are excellent antimicrobial metal-releasing systems due to their high chemical and thermal
  • Cu NPs. The bioavailability of these antimicrobial NPs had lower MIC values against E. coli and B. subtilis than copper hydroxide particles in suspension [143]. Silver carbon complexes with different formulations, including micelles and NPs, have also shown an antimicrobial effect since they inhibit
PDF
Album
Review
Published 25 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell
  • applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal
  • only addresses the above-discussed challenges but also represents a reproducible method, which in principle is scalable, for the production of carbon-supported electrocatalysts developed on the basis of a previously reported process [17]. An inductively coupled plasma-enhanced chemical vapor deposition
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • communication system: a focus on harmful effects of air pollution carbon-containing nanoparticles” (Reg. Project #2020.02/0147). Author Contributions Nanoparticles were synthesized by MB and DH; KP and AP performed experimental work with glutamate adsorption and nerve terminals; KP made computational analysis
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China Institut für Organische Chemie, Universität Tübingen, Auf der
  • ) on Ag(111) via X-ray standing waves (XSW), low-energy electron diffraction (LEED) as well as ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). XSW revealed that the adsorption distances of F4PEN in (sub)monolayers on Ag(111) were 3.00 Å for carbon atoms and 3.05 Å for fluorine atoms
  • levels on Cu(111) [63], the C 1s peak centered at 287.29 eV binding energy (BE) was assigned to the carbon atoms bound to the fluorine atoms (C–F), and the main peak centered at 284.88 eV BE was assigned to the carbon atoms in the backbone of F4PEN (C–C). In addition, at the low-BE edge a small tail
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • medium channel [36][37][38]. However, the role of other impurities such as hydrogen and carbon from adventitious surface hydrocarbons in the observed p-doping ought to also be considered in future studies. For a given delivered dose, the ion beam provides a high concentration of effective adsorption
PDF
Album
Full Research Paper
Published 04 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • Yi Wang Yanhua Song Chengwei Ye Lan Xu National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China 10.3762/bjnano.11.112 Abstract Ordered carbon/graphene composite nanofibers (CGCNFs) with different porous
  • surface area of CGCNFs, thereby significantly increasing their specific capacitance. In addition, the ordering of CGCNFs within the electrode improved the electron transfer efficiency, resulting in a higher specific capacitance. Keywords: carbon/graphene composite nanofibers; carbonization
  • devices [1][2], are one of the most needed energy storage devices. Their main characteristics include high energy density, high power density, and fast charging speed [3][4][5]. These instruments have electrodes that are composed of either carbonaceous materials (carbon nanotubes, graphene, carbon
PDF
Album
Full Research Paper
Published 27 Aug 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • [57]. High-resolution transmission electron microscopy (HRTEM) To prepare the specimens for HRTEM measurements, the samples were manually applied onto the lacey carbon-coated side of the 300 mesh copper grid and air-dried under ambient conditions. The particle morphology was characterized by TEM and
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • the first cycles, limiting commercial viability. The trade-off to maximize the reversible capacities and simultaneously minimizing irreversible losses can be achieved by tuning the exact architecture of the subnanometric pore system inside the carbon particles. Since the characterization of small
  • descriptors to the obtained capacities remains a scientific challenge. Keywords: alkaline-ion secondary battery; gas sorption porosimetry; hard carbon; irreversible capacity; ultramicroporosity; Introduction Lithium-ion battery (LIB)-based energy storage devices have been gaining high interest in the recent
  • [8]. Historically, the first LIB introduced by Sony Corp. used a slightly disordered carbon, a so-called soft carbon (SC), which is graphitizable at temperatures of ca. 3000 °C, and later, from 1992, a more disordered hard carbon (HC), which is not graphitizable at temperatures of ca. 3000 °C as
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • , whereas the volatile products ones are pumped out of the process chamber. Normally, the final deposit is a mixture of carbon, metallic elements and oxygen. As clearly described using analytical modelling [29] and Monte-Carlo simulations [30], the vertical growth of 3D nano-objects by He+ FIBID is mainly
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • original growth substrate by ultra-sonicating the growth substrate in purified water. For Raman and TERS investigations, nanowires are deposited on gold-coated silicon wafers as carrier substrates. For transmission electron microscopy (TEM), nanowires are deposited on copper TEM grids with lacey carbon
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • active nanoparticles: a brief overview Nowadays, there is a broad spectrum of nanoparticles that are able to convert absorbed light into heat through a phenomenon known as the photothermal effect [33][35]. These nanoparticles are predominantly inorganic, constituted by noble metals (Au, Ag), carbon-based
  • photothermal effect under NIR laser irradiation. Carbon nanotubes are another valuable class of nanomaterials. They have high photothermal efficiency under NIR irradiation which excites the longitudinal phonon resonance along the nanotube. The resonance peaks can be tuned by changing the tube length [86
  • ]. Therefore, carbon nanotubes also have potential to be used in the NIR-triggered photothermal bacterial treatment. It was shown that multiwall carbon nanotubes functionalized with antibodies against the group A Streptococcus bacteria were capable of photothermally ablating the planktonic and biofilm-residing
PDF
Album
Review
Published 31 Jul 2020

Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer

  • Sébastien Gottis,
  • Régis Laurent,
  • Vincent Collière and
  • Anne-Marie Caminade

Beilstein J. Nanotechnol. 2020, 11, 1110–1118, doi:10.3762/bjnano.11.95

Graphical Abstract
  • 13C NMR spectra by the presence of two signals for each carbon atom present in this linkage. The complexation of the dendritic compound 3 with AuCl(tht), yielding compound 4 as a white powder, was carried out following the same procedure used to obtain compound 2 from compound 1. Compound 4 was
PDF
Album
Supp Info
Letter
Published 28 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • . developed a method of including uncoated SPIONs in hollow carbon spheres. They showed that the nanoparticles remained unaffected by cellular degradation and maintained their magnetization properties [130]. Hennig et al. studied the way nanoparticles cross human arterial walls under real flow conditions when
  • nanoparticles, without doping or doped with rare earth metals, were designed in our labs for the use in MRI. Our studies showed that their effects on cells depend on the cell type, cluster design and concentration [158][159]. Asgari et al. [160] produced 50 nm SPION–carbon dot nanoparticles, which were designed
  • graphitic-phase carbon nitride and coated with polyethylene glycol for MRI and fluorescence imaging and for photodynamic therapy. This type of nanoplatform seems to be a good one-for-all solution, as it could be controlled to be non-toxic or highly toxic from the outside. In vitro and in vivo analyses
PDF
Album
Review
Published 27 Jul 2020

Plant growth regulation by seed coating with films of alginate and auxin-intercalated layered double hydroxides

  • Vander A. de Castro,
  • Valber G. O. Duarte,
  • Danúbia A. C. Nobre,
  • Geraldo H. Silva,
  • Vera R. L. Constantino,
  • Frederico G. Pinto,
  • Willian R. Macedo and
  • Jairo Tronto

Beilstein J. Nanotechnol. 2020, 11, 1082–1091, doi:10.3762/bjnano.11.93

Graphical Abstract
  • mass and the fragments with m/z 18 and m/z 44 (water and carbon dioxide, respectively) are attributed to dehydroxylation and the thermal decomposition of the NAA anion. Considering the hydration water amount (9.6%), the NAA content in ZnAl-NAA-LDH determined by electronic absorption spectrophotometry
  • -LDH. Averages followed by the same letter do not differ from each other by the Tukey test (p > 0.05). Scheme of the bioassays. Composition of polymeric alginate films. pH values, macronutrients, micronutrients, organic matter and organic carbon contents of the soil used in the bioassays. Supporting
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2020

Vibration analysis and pull-in instability behavior in a multiwalled piezoelectric nanosensor with fluid flow conveyance

  • Sayyid H. Hashemi Kachapi

Beilstein J. Nanotechnol. 2020, 11, 1072–1081, doi:10.3762/bjnano.11.92

Graphical Abstract
  • result, MWNS materials are preferred in many applications such as nanoresonators. Many studies have been carried out on the vibration and stability analysis of nanostructures with some reviews given as follows. Strozzi and Pellicano investigated the vibration analysis of triple-walled carbon nanotubes
  • stress theory to investigate the effects of various fluid parameters on the pull-in voltage of carbon nanotubes conveying viscous fluid [15]. Also, the vibration analysis of viscoelastic double-walled carbon nanotubes (DWCNTs) combined with ZnO layers and subjected to magnetic and electric fields were
  • a modified strain gradient theory (MSGT) and Gurtin–Murdoch surface elasticity to investigate the size-dependent nonlinear pull-in instability [28]. A new size-dependent nonlinear model for the analysis of the behavior of carbon nanotube resonators was introduced by Farokhi et al. based on modified
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • 284.2 eV corresponding to C=C bonding. Additionally, components of carbon bonded to oxygen and nitrogen are present in the analysis, as expected. Figure 2 shows a schematic representation of the FLG-Ce6 hybrid nanomaterial. The green dotted lines indicate the in-plane π–π stacking interactions between
  • Bay Carbon, Inc., respectively. 1 mg of graphite and 2 mL of a solution of Ce6/methanol at 1 mg/mL was added to 8 mL of deionized water. The sample was sonicated for 45 min using a Branson 2510 ultrasonic bath with a frequency of 40 kHz and power of 130 W, then centrifuged at 500 rpm for 90 min. The
  • preparation of the samples was done by the “drop casting” technique by depositing 100 μL of the FLG-Ce6 solution on the TEM grids (200 mesh, cooper, carbon only) and drying them in vacuum for 48 h. Photoactivation The illumination source consists of 6 LEDs connected in parallel and distributed as follows
PDF
Album
Full Research Paper
Published 17 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • graphene lattice, respectively. That is, in A4Z6-6, A4 and Z6 represent two translational vectors the magnitudes of which are four armchair and six zigzag atomic arrangements, respectively. The figure six at the end indicates the number of carbon atoms eliminated from the supercell. As indicated in Figure
  •  1, from the A4Z6-6 and A4A4-6 supercells six carbon atoms (one hexagon) were removed, and from the A4Z6-24 supercell 24 carbon atoms were removed. Note that the creation of these holes in the graphene lattice leaves dangling bonds on carbon atoms at the edges and increases the reactivity of these
  • atoms. Carbon atoms located at the edge of the holes can react easier with substrate atoms. While these atoms can be passivated with hydrogen and oxygen, we chose to use hydrogen. Figure 1d and Figure 1e show photodetector devices that are made of GNR and GNM materials, respectively. In the former, the
PDF
Album
Full Research Paper
Published 15 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • nanoparticles of Cu and Ni and one-dimensional nanorods of CuS, ZnF2, and NiF2 protected with fluorinated amorphous carbon. We have also synthesized reduced graphene oxide and partially rolled graphene by this method. Keywords: electric discharges; microwave synthesis; nanomaterials; transmission electron
  • treatment of metals under microwave irradiation in organic solvents can carbonize the organic solvents forming carbon-coated metallic nanoparticles [15][16]. Recently, Pentsak et al. have shown that metals, such as Cu, Fe, and Mo, on carbon form nanometer-scale structures under microwave heating [17
  • of Cu, Ni, und Zn nanoparticles from metal particles. Also, we can control the morphology of the nanomaterials, which has not been achieved before. ZnF2, NiF2, and CuS nanorods covered with amorphous fluorinated carbon were synthesized. We have also extended this procedure to synthesize reduced
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • microcrystalline Te films have remarkable, sensitive properties toward ammonia [8][9] and hydrogen sulfide [10] and, to a lesser extent, to carbon oxides and amines [11]. In the last years, due to the increase in the general interest toward nanodimensional devices and structures, significant attention has been
PDF
Album
Full Research Paper
Published 10 Jul 2020

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • spectroscopy (EDS) was performed. The EDS spectrum shows that iron, gadolinium and oxygen were the main elements present in the nanocubes. No other impurity elements can be detected except carbon element, which contributes from carbon film on copper mesh used in the EDS experiments. EDS mapping indicates that
PDF
Album
Full Research Paper
Published 08 Jul 2020

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • organic templates are examples of alternative ways to synthesize helical nano- or microfibers from various materials like carbon nanotubes (CNTs), ZnO or different polymers [8][48][49]. Here, we present a simple method for synthesizing helical chitosan microfibers with embedded magnetic nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020
Other Beilstein-Institut Open Science Activities