Search results

Search for "crystal structure" in Full Text gives 288 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • particles inside the nanocolumn array were observed by TEM. We also studied the crystal structure of the TiO2 nanocolumns. Figure 4 shows the TEM and high-resolution spectra of the nanocolumn structure. Figure 4a shows the bare TiO2 nanocolumns without Ag. It can be seen from the figure that the size of the
PDF
Album
Full Research Paper
Published 05 May 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • Equation 1 and Equation 2 for an fcc crystal structure are 0.8, 1 and 1.3 for the three principal crystallographic directions [110], [100] and [111], respectively [21]. In order to apply this theory to the thinning at grain boundaries, we have to recall two facts. Firstly, in nanocrystalline elemental
PDF
Album
Full Research Paper
Published 22 Apr 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • steel current collectors, separated by filter paper dipped in 1 M H2SO4 electrolyte. Results and Discussion LPE assisted by tip sonication is an effective technique to peel off mono- and few-layers from layered bulk materials. In the crystal structure of α-MoO3 the atoms are connected to layers through
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • the top layer of the tensile-strained LSMO drastically changes the magnetic anisotropy of the ferromagnetic layer. In previous studies, an emergent uniaxial contribution in LSMO films grown on (001)-oriented STO is associated with crystal distortions of the film where the tetragonal crystal structure
  • thickness of the LSMO layer systematically varied with tLSMO = 20, 27, and 40 nm, maintaining the thickness of the BTO layer constant at tBTO = 140 nm. The thickness of each individual layer was determined by X-ray reflectivity (not shown). The crystal structure analysis of each film was performed by means
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • signal is produced. The olivine crystal structure on the planar locations is not the only influence on the ionic mobility, but it is an additional factor next to the structural disordering, high concentration of defects and lower energy barrier and more important on planar locations than on structural
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • the 3D phases make these 2D phases a promising material for optoelectronic applications [7][8][9][10][11]. Larger organic cations “cleave” the crystal structure of the perovskite and are integrated into the material, yielding a high degree of chemical diversity to this class of organic–inorganic
  • inorganic layer with only corner-sharing octahedra. The broadened reflexes of 2D-AzoOC12 suggest the formation of a crystal structure with corner- and face-sharing octahedra [43]. Both crystal types are direct semiconductors [44], which is why the structural differences are not important for our further
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • reaction time leads to the formation of highly crystalline Hap nanorods as shown in Figure 1. It is noteworthy that the XRD pattern of CB powder exactly matches with the aragonite crystal structure of calcium carbonate (CaCO3, JCPDS file 75-2230). Interestingly, aragonite CaCO3 was completely transformed
PDF
Album
Full Research Paper
Published 04 Feb 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • supercapacitor. The crystal structure of CA, NiMoO4, the Co3O4 nanoparticles derived from ZIF-67 and the NiMoO4@Co3O4/CA composite was examined using X-ray powder diffraction (XRD) as shown in Figure 3a. For CA, a broad diffraction peak is observed at about 22.8°, which can be attributed to the (120) planes of
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • insertion material, because magnesium can form intermetallic compounds with antimony. In addition, Sb has a rhombohedral crystal structure, which can form an alloy over a wide composition range [6][7]. The high initial capacity of 298 mAh/g at 1C rate has been reported for electrochemical magnetization at
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • ) planes of the spinel ZnFe2O4 crystals. In addition, the angle of the two is measured as 25.24°, which is consistent with computations of the crystal structure. Moreover, the inserted fast Fourier transform (FFT) image reveals the typical hexagonal diffraction ring of rGO. As shown in Figure 6d, the
PDF
Album
Full Research Paper
Published 16 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • flexible polymer composite materials. Keywords: finite element method; mechanical properties; molecular dynamics; nanowires; Introduction Nanostructures comprised of noble metals with face centered cubic (FCC) crystal structure (Au, Ag and Cu according to the most common physical definition) prepared via
  • ]. In this model, the pentagonal NW was composed of five triangular prism-shaped domains with vertex angle of 72°. These domains represent the FCC single crystals. Each domain was assigned an elasticity matrix of Ag or Au corresponding to their crystal structure to account for structural anisotropy. The
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • mica, however, exhibits a wide excitation band around 312 nm, which could arise from an important change of the local environment of [Tb(hfac)3·2H2O] with the presence of water and potassium ions in close proximity to the hfac ligands. Discussion As previously described [22], the crystal structure of
  • )3·2H2O]n@mica (bottom). Crystal structure of [Tb(hfac)3·2H2O]n [22] with H-bond network highlighted as blue dotted bonds (carbon: brown; oxygen: red; hydrogen: blue; fluorine atoms are omitted for clarity). Luminescence lifetimes of [Tb(hfac)3·2H2O] in CHCl3 solution, [Tb(hfac)3·2H2O]n@mica and bulk
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst

  • Ghada Ayoub,
  • Mihails Arhangelskis,
  • Xuan Zhang,
  • Florencia Son,
  • Timur Islamoglu,
  • Tomislav Friščić and
  • Omar K. Farha

Beilstein J. Nanotechnol. 2019, 10, 2422–2427, doi:10.3762/bjnano.10.232

Graphical Abstract
  • -400 (see section S.2.1, Table S1 in Supporting Information File 1 for crystal structure details) was established from PXRD data, by Rietveld refinement (Figure S1, Supporting Information File 1) of a model generated from UiO-67 (CCDC code WIZMAV03). The morphology of the materials was confirmed by
  • linker, pyrene-2,7-dicarboxylic acid and b) Zr6 metal node. c) Fragment of the crystal structure of NU-400, established from PXRD data. Hydrogen atoms and disorder of pyrene groups are not shown for clarity. Zr: green, O: red, and C: grey. Conversion of CEES to CEESO under different conditions: (a
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • a predominantly hexagonal crystal structure. Minor peaks at 47° (220) and 55° (311) 2θ indicate a small fraction of the cubic phase. The XRD patterns of the silica-coated UCNPs show the same peaks (mainly the hexagonal phase) with decreasing intensity as the silica shell thickness increases
  • . Accordingly, the broad signal of the amorphous silica at 2θ = 20–25° becomes more dominant with increasing thickness of the silica shell. These data indicate that the crystal structure of the UCNP cores is not changed during the silica shell formation process. Figure 3 shows the upconversion luminescence (UCL
  • multicore particles. The latter is related to the relatively small zeta potential of these silica-coated UCNPs which are not very stable in ammoniacal ethanol. Despite the rather harsh conditions during the growth process, this procedure does not influence the crystal structure of the UCNPs and the shape of
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • Composition and crystal structure of Ni1.7Co1.3O4 were characterized by XRD. The XRD pattern of the NiCo oxides (Supporting Information File 1, Figure S2a) show distinctive diffraction peaks at 2θ = 21.87°, 36.32°, 42.69°, 51.95°, 69.89° and 76.83°, which can be assigned to the (111), (220), (311), (400
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • further investigation. These include the differences between lightly and heavily doped TiO2 as well as the effects of S-doping on the crystal structure, the energy band structure and the chemical states of Ti and O. In this work, (001)-TiO2 nanoparticles (NPs) were first prepared, then S-doping was
  • then dried at 60 °C. The S-doped TiO2 samples synthesized at 180 °C were named 1-S0, 1-S0.5, 1-S1, 1-S2, 1-S3, 1-S4, and 1-S5; samples synthesized at 250 °C were named as 2-S0, 2-S0.5, 2-S1, 2-S2, 2-S3, 2-S4, and 2-S5. Characterization The crystal structure of the samples was investigated using an X
PDF
Album
Full Research Paper
Published 01 Nov 2019

Ion mobility and material transport on KBr in air as a function of the relative humidity

  • Dominik J. Kirpal,
  • Korbinian Pürckhauer,
  • Alfred J. Weymouth and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2019, 10, 2084–2093, doi:10.3762/bjnano.10.203

Graphical Abstract
  • the crystal structure during the scratching process. Now, the material is likely no longer in a monocrystalline configuration like the bulk material. The material accumulation therefore is less stable and more mobile. This hypothesis explains the increased volume change during the first hours compared
  • relative humidity, and size and shape of the accumulation or defect. Directly after the scratching process the material that is ripped out of the crystal structure does not fully realign. Therefore, it is less stable and more mobile or more likely to dissolve in the water film. This leads to a short time
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • maximum conversion of 83% after 24 h, the ETS-10-based catalyst reached 100% after 8 h, revealing its higher stability compared to CaO. The following characteristics of the catalysts were experimentally addressed – crystal structure (X-ray diffraction, transmission electron microscopy), crystal shape and
  • active catalysts amongst the crystalline microporous molecular sieves (such as, e.g., zeolites) reported for the transesterification of triglycerides with methanol [20]. Its crystal structure is built up from orthogonal TiO6 octahedra and SiO4 tetrahedra sharing oxygen atoms and forming a three
  • catalysts were characterized to obtain quantitative information on properties such as crystal structure by X-ray diffraction (XRD), crystal size by laser diffraction, crystal morphology by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), pore width by N2 sorption and Hg
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications

  • Tugrul Guner,
  • Hurriyet Yuce,
  • Didem Tascioglu,
  • Eren Simsek,
  • Umut Savaci,
  • Aziz Genc,
  • Servet Turan and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 2004–2013, doi:10.3762/bjnano.10.197

Graphical Abstract
  • Figure 2 shows HRTEM micrographs of several individual nanoparticles identified as carbon quantum dots (CDots). We further diluted the stock solution for the HRTEM analysis in order to obtain the crystal structure of individual CDots avoiding possible agglomerations. As a consequence, the prepared TEM
PDF
Album
Supp Info
Full Research Paper
Published 15 Oct 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • ) Synthesis scheme of M-CAT-1 using 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and the respective metal acetate under solvothermal conditions. B) Side view of the Co-CAT-1 crystal structure illustrating infinite layers of HHTP2Co3. C) View along the crystallographic c-axis highlighting the hexagonal pore
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • a spherical shape of the nanoparticles with an average diameter of 5–8 nm and a cubic spinel-type crystal structure of space group Fd−3m. Raman, Mössbauer and NMR spectroscopy clearly indicate the presence of the maghemite γ-Fe2O3 phase. Moreover, a difference in the magnetic behavior of uncoated
  • (NMR) spectroscopy, where the latter provides the most descriptive results. Traditionally, XRD is one of the most popular methods used to study crystal structure. However, in the case of iron oxides, especially with nonstoichiometric composition, this method does not allow for the precise determination
  • of the structure due to the presence of both magnetite Fe3O4 and maghemite γ-Fe2O3. Another method to distinguish between Fe2+ and Fe3+ and their positions in the crystal structure is Mössbauer spectroscopy. However, the use of ionizing radiation and radioactive sources in this method limits the
PDF
Album
Full Research Paper
Published 02 Oct 2019

High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide

  • Yongcai You,
  • Ruirui Xing,
  • Qianli Zou,
  • Feng Shi and
  • Xuehai Yan

Beilstein J. Nanotechnol. 2019, 10, 1894–1901, doi:10.3762/bjnano.10.184

Graphical Abstract
  • rheological properties. The crystal structure remained unchanged (Figure 3E) and no obvious aggregation or precipitation was observed. Also, the microtopography of the hydrogel exhibited no obvious changes (Supporting Information File 1, Figure S1). The environmental conditions, such as pH and temperature
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • the samples in KBr pellets. a) Nitrogen adsorption isotherms at 77 K and b) high-pressure CO2 adsorption isotherms at 298 K, on MUV-2 (black) and C60@MUV-2 (red). a) Minimum-energy crystal structure calculated for conformations A and B of host–guest C60@MUV-2 at the PBEsol level under periodic
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Graphical Abstract
  • discussed further below. The crystal structure of the representative products was analyzed by X-ray diffraction (XRD) measurements and attenuated total reflection Fourier-transform infrared (ATR-FTIR) absorption spectroscopy. The XRD profiles showed three peaks at 2θ (θ is the Bragg angle) of 12.2, 19.9
PDF
Album
Correction
Full Research Paper
Published 26 Aug 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • -response is ascribed to the unique anisotropic in-plane crystal structure, consistent with the optical absorption anisotropy results. In general, 1T’-WTe2, with its highly anisotropic electrical and photoresponsivity reported here, demonstrates a route to exploit the intrinsic anisotropy of 2D materials
  • monolayer 1T’-WTe2 has a highly in-plane anisotropic crystal structure, in addition to anisotropic electrical, thermal and optical properties [23][24][25][26]. However, most of the results are based on theoretical demonstrations of the anisotropic phenomenon, rather than further quantitative data for the
  • and azimuth-dependent reflectance difference microscopy (ADRDM), we firstly identified the 1T’-phase WTe2 to have an optical anisotropic crystal structure. Secondly, a 12-electrode-structure was designed for the evaluation the electrical anisotropy of 1T’-WTe2, and the results demonstrated up to 103
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019
Other Beilstein-Institut Open Science Activities