Search results

Search for "current" in Full Text gives 1258 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • [FeIV(CN)6]2− as reported in [39]. As a result of the modification with GQDs, electron transfer was improved, resulting in a higher peak current and an electron-conducting channel on the modified electrode, showing an increase in peak current from 0.037 to 0.39 mA. Effect of scan rate Figure 7b shows
  • cyclic voltammetry results of the GQDs/GCE electrode to study the interfacial kinetics from 20 mV·s−1 scan rate to 400 mV·s−1 scan rate. The increase in the square root of scan rates led to a linear increase in peak current for anodic and cathodic reactions, as shown in Figure 7c. For scan rates of 20 to
  • voltammetry (DPV) analysis was conducted with various concentrations of malathion in 0.1 M PBS (pH 7) at a scan rate of 50 mV·s−1. Different concentrations of malathion were detected. The oxidative desulfurization of malathion into malaoxon (Figure 8) results in a current peak (centered at +1.9 V) at the GQDs
PDF
Album
Full Research Paper
Published 09 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • frequencies below 1 Hz, representing the ability of the sample to impede the flow of current between cathodic and anodic areas, equal to ca. 1 × 1010 Ω. When the RH is higher than 50%, the impedance modules at low f decrease by up to three orders of magnitude, and the log Z curves show a linear dependence on
  • applied potential of 3–4 V, a current conditioning time of 5 s, a frequency in the range from 0.1 Hz to 10 kHz, and an amplitude (RMS) of 0.1 V. Before the measurements, the sample was held in constant RH for 20–25 min until the impedance spectra remained stable. The spectra were first measured in a
PDF
Album
Full Research Paper
Published 05 Jun 2023

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • continuum (BIC)) which are current in focus nanophotonics research topics, all-dielectric nanostructures have proved themselves to be a good platform for light–matter interactions and an advantageous alternative to their plasmonic counterparts. A TD resonance is produced by the flow of electric currents on
  • interact directly with electromagnetic waves and is often masked by electric dipoles (EDs) or magnetic dipoles (MDs) with stronger responses. However, the TD has a unique current distribution, which can generate a strong near-field localization effect, so it has broad application scenarios [8]. The anapole
  • -factor of 175. The electric and magnetic field amplitude distributions at the resonance wavelength are plotted in Figure 2b, where the white arrows represent the electric displacement current vectors. It is seen that the electromagnetic field is well confined within the silicon disk. Although the optical
PDF
Album
Full Research Paper
Published 02 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • current trend in the abuse of antibiotics persists, 300 million people will die prematurely globally over the next 28 years [17]. Considering these environmental and health concerns, a number of regulatory bodies and nations, including the EU, have prohibited the use of chemicals and pharmaceuticals with
  • researchers have published a number of nanomaterial-based (quantum dots, carbon-based, and metal-based) sensors for the detection of various analytes [1][2][7][9][27][28][29][30][31][32][33][34][35][36][37][38]. A review paper that offers a comprehensive analysis of current developments based on metal-organic
  • conductometric sensors at various frequencies. In potentiometric sensors, a local equilibrium is created at the sensor–analyte interface, and when no current is present, the composition or concentration of the analyte is determined from the potential difference (voltage) between the working and the reference
PDF
Album
Review
Published 01 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • mouth opening. By altering the parameters, it was unraveled that the system performs best when the long and short setae have different mechanical properties and different degrees of adhesion since the long setae generate the feeding current and the short ones establish the contact with the particle
  • , see [12][13]). Even though most crustaceans are primarily raptorial, suspension feeding plays an important role. In general, multiple pairs of appendages generate the feeding current, and the particles are captured by plumate “filter setae”, which cover the trunk and head appendages. These setae have
  • during suspension feeding. In the past, numerical simulations were used to study the detection of prey, mates, or predators and the feeding current generation by limb motion [28][39][40][41]. However, mechanical property gradients and adhesion of setae were previously not addressed. As model organism we
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • graphene has also sparked interest in other non-carbon 2D materials [1][2]. One of such materials is 2D silicon, called silicene [3][4]. Using first-principles methods with current computer resources enables us to model structures up to about a few hundred atoms. For larger systems, approximate methods are
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • and flexible devices are paradigms of the current “Industry 4.0”. One can envision applications such as multicomponent liquid and gas sensors, wearables for healthcare, paper-based sensors, and electronic solutions for smart city applications [1][2][3][4][5]. Another area of increasing demand is the
  • the set [62]. Results and Discussion Liquid analysis Detection of glycerin in water The liquid sensing measurements were performed by applying a fixed voltage (5 V) on the device while measuring the current (I) as a function of the time. 6.5 µL of the tested liquid was dripped onto the transducers
  • , while the current was monitored until complete evaporation of the liquid. The device temperature was kept just below the boiling point of the liquid under evaluation. Afterward, the current was used to calculate the resistance, R0 (see Figure 1c), and the sensitivity gain (S), defined as S = ((R – R0
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • demonstrated great biocompatibility, allowing the cells to survive over long periods of time [38]. However, in the present study using chitosan-based biohybrids, we have observed that the cells did not stay alive for long. The current results point out that chitosan may exhibit antibacterial activity
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • graphene has 0.987 > R2 > 0.985. R2 values less than 0.985 would indicate a thicker flake with more than seven layers. We have applied the three metrics described above to the current data, both the averaged spectra and each individual spectrum, with the results shown in Figure 5. It is clear that, neither
  • when fitted with both a GNP and graphite spectrum. The inset shows the low-loading region of the graph, with the same axes. Comparison of literature metrics applied to the current data. (A) Mean number of layers calculated for the two metrics published by Backes and co-workers [13]. (B) R2 value for
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Microneedle patches – the future of drug delivery and vaccination?

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2023, 14, 494–495, doi:10.3762/bjnano.14.40

Graphical Abstract
  • vivo studies for example. In the meantime, progress towards large-scale manufacture of moulded polymer MNs is progressing at pace, with the aid of new advanced 3D mould fabrication tools [10]. This special edition provides a snapshot of current research into MNs and their applications. It focuses on
PDF
Editorial
Published 14 Apr 2023

Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field

  • Ruslan A. Rytov and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2023, 14, 485–493, doi:10.3762/bjnano.14.39

Graphical Abstract
  • θ and φ (in radians) in a dc magnetic field directed perpendicular to the particle easy anisotropy axis. Figure 4a and Figure 4b show the total energy of the particle in the absence of a dc magnetic field, Hdc = 0, at times when the current ac magnetic field is zero or equal to its maximum value
PDF
Album
Full Research Paper
Published 14 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • . Current technologies for dealing with the water shortage problem either exacerbate energy problems or sacrifice the environment. Solar-driven steam generation technology, in contrast, is a solar-powered technology that meets the global trend for clean, sustainable, and green technology. To obtain a high
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • , molecular nanoelectronics beyond current silicon-based device technologies can be realized. It also provides new scientific opportunities, such as measuring electrical conduction in structurally perfect one-dimensional materials and analyzing the propagation mechanism of chain polymerization. Thus, various
  • reversibly terminated by C60 fullerene molecules (Figure 4). First, the Au probe was positioned at the target Br atom site. Then, when the bias voltage was swept, an abrupt change in the tunneling current was detected. As a result, the bromine atoms disappeared from the molecule and the C–Br bonds in the
  • boron site embedded at the center of the graphene nanoribbon was investigated. Si atoms were removed by vertical manipulation with a tip (Figure 5). In this manipulation, the tip was positioned at a silicon site and then moved closer to the silicon atoms while recording the tunneling current. After the
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • the surface of nickel foam. The chronoamperometric graph recorded during the deposition is presented in Figure 1a. Each synthesis (except that of GO) began with a fast increase of the cathodic current, which is associated with the formation of the new catalyst phase on the surface of the substrate [25
  • ]. Afterwards, the current density tended to stabilize for NiFe and CoNiFe, which may be associated with the steady-state formation of the catalyst film on the metallic surface. The addition of cobalt to NiFe resulted in a lower overall current density during the synthesis process. In the case of the deposition
  • of NiFe and CoNiFe on GO/nickel foam, the specific current density peak appeared after around 8 s and 20 s of the deposition for CoNiFe-GO and NiFe-GO, respectively. Because the metallic films were deposited on the surface of nickel foam already modified with GO, the peak may be associated with the
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • prior to making the final choice. We conclude with a broad perspective on current research, challenges that remain to be solved, as well as prospects in terms of material design and deployment for better exploitation of such nanostructures for PT energy conversion. 2 Plasmonics in PT conversion Of the
PDF
Album
Review
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • used to investigate the specificity of nanoparticles to the glioblastoma multiforme cancer cells in the current study. ARPE19 cells as a part of the central nervous system were also used as the non-cancer cell (control). In addition, the antibacterial activity of the synthesized Ag NPs was tested
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • overview of the current status and outline important concerns regarding the need for standardized protocols to evaluate NP uptake, NP transfection efficacy, drug dose determination, and variability of nonviral gene delivery systems. Based on these concerns, we propose wide adherence to multimodal
  • due to the COVID-19 pandemic and the breathtaking acceptance of mRNA-based vaccines [15]. Following the spirit of MIRIBEL, the current perspective was written with two specific aims in mind. First is to provide an overview of current concerns regarding aspects of NP uptake, transfection efficiencies
  • studies. Regardless of the uptake pathway, the current understanding of how NPs induce endosomal escape lags behind and is limited by the current techniques used to detect it. Thus, new and accurate endosomal escape assays are required to understand the relationship between NP composition and endosomal
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • , and they are more rounded in capillaries and venules. Their shape is related to the speed of blood flowing through the vessels, where the rapid current stimulates cell elongation [9]. Furthermore, there are primary cilia on the surface of endothelial cells, which act as mechanoreceptors. Cilia pick up
PDF
Album
Review
Published 08 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • people live in water-stressed countries, according to the World Health Organization (WHO, 2020), and it is anticipated that this situation will get worse in some areas because of the increased industrial discharge of contaminated water, population growth, and climate change [1]. According to current
PDF
Album
Review
Published 03 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising
  • Application of cancer cell membrane-encapsulated NPs Regarding current therapies, patients respond differently to the same treatment because of different degrees of disease progression and individual differences and inevitably suffer from a certain degree of toxicity and side effects. Therefore, it is
  • targeting disease-related CD4 T cells. The NPs exhibited efficient suppression of the inflammatory environment and promoted homeostasis of the immune system, which shows promise for clinical translation. 4 Combining current therapeutics with cancer cell membrane-encapsulated NPs With the ongoing exploration
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • genetic alterations leading to drug resistance. Further, an emphasis will be put on the developmental challenges of targeted nanomedicines for the co-delivery of therapeutic agents to lung tumors. Finally, current approaches in literature used to design nanotools loaded with logical combinations of
  • different drugs and inhibitors of various oncogenic pathways to fight NSCLC resistance are covered. Review EGFR mutations and current problems in NSCLC treatment The main reasons behind the limited success of TKI monotherapy in the suppression of lung cancer growth for an extended period are tumor
  • and safety of the current therapy for lung cancer treatment. Co-delivery of combined therapeutic agents at the right time and at the right place using smart nanotools to exert a simultaneous effect on multiple signaling pathways, leading to the avoidance or combating of resistance as well as the
PDF
Album
Review
Published 22 Feb 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • Yaroslav V. Turkin Nataliya Pugach HSE University, Moscow 101000, Russia Vernadsky Crimean Federal University, Simferopol 295007 10.3762/bjnano.14.22 Abstract The main goal of the present work is the description of the dynamics of spin current and induced magnetization inside a superconducting
  • film S that is in contact with a ferromagnetic insulator layer FI. Spin current and induced magnetization are calculated not only at the interface of the S/FI hybrid structure, but also inside the superconducting film. The new and interesting predicted effect is the frequency dependence of the induced
  • ways of spin current injection into a superconductor, for example, the spin Hall effect [5], the spin Seebek effect [6], and ferromagnetic resonance spin pumping [7][8]. The spin pumping technique in hybrid structures consisting of a ferromagnetic insulator and a superconductor is considered to be the
PDF
Album
Full Research Paper
Published 21 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • recorded using a rotating electrode with an RRDE ring [42]. The number of electron was calculated as: while the amount of hydrogen peroxide was calculated from the equation: where ID is the disc current, IR is the ring current, and η is the electrode collection coefficient. The results of RRDE measurements
  • formed high-quality suspensions. However, the used C-11 carbon support affected the suspension quality of materials C and D as they tended to sediment after a longer period. Based on the results of the disc current density measurement (Figure 5a), it can be concluded that materials C and D, made from the
  • C-11 carbon support, show the weakest performance. This observation is also evidenced by the lowest onset (Eonset = 0.865 V) and half-wave (E1/2 = 0.640 V) potential values for material D (Table 2), limiting the current density and activities of the catalysts, assessed via RRDE experiments
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • similar to a microstrip patch antenna. However, it is biased by a dc current distributed over the whole area of the junction. The oscillating electric field is generated internally via the ac-Josephson effect. In this work, I present a distributed, active patch antenna model of a Josephson oscillator. It
  • takes into account the internal Josephson electrodynamics and allows for the determination of the effective input resistance, which couples the Josephson current to cavity modes in the transmission line formed by the junction. The model provides full characterization of Josephson oscillators and
  • magnetic field, Hy, introduces a chain of Josephson vortices (fluxons) in the JJ. The dc bias current, Ib, exerts a Lorentz force, FL, and causes a unidirectional fluxon motion. Upon collision with the junction edge, the fluxons annihilate. The released energy produces an EMW pulse, which is partially
PDF
Album
Full Research Paper
Published 26 Jan 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • promising materials, such as conductive fibers [6], phase change fibers [7], antistatic fibers [8], and antibacterial fibers [9]. Therefore, the batch preparation of high-performance functional nanofibers by electrospinning has become a current research hotpot [10]. The properties of spinning solutions used
PDF
Album
Full Research Paper
Published 23 Jan 2023
Other Beilstein-Institut Open Science Activities