Search results

Search for "current" in Full Text gives 1258 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • in Equation 4, and presented in Figure 3c. With the current setup we achieved a coupling rate of 37.1 Hz. Deviations from the linear fit line starting from the origin are a direct consequence of the approximation. It forgoes the interference between the hybridized modes around the original
PDF
Album
Full Research Paper
Published 19 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • computational methods to characterise the response of this system. First, an enhanced surface plasmon resonance experiment in a classical Kretschmann configuration is used to measure the changes in the reflectivity induced by an alternating electric current. A lock-in amplifier is used to extract the dynamic
  • changes in the far-field reflectivity resulting from Joule heating. A clear modulation of the materials’ optical constants can be inferred from the changed reflectivity, which is highly sensitive and dependent on the input current. The changed electrical permittivity of the active element is due to Joule
  • layer of silver. Applying a current through the silver layer results in increased heating at the constriction due to the reduced cross section. Consequently, given the dependence of the materials electric permittivity on temperature, the optical response will change locally. In this work, we have
PDF
Album
Full Research Paper
Published 16 Jan 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • magnetic proximity effect at a ferromagnetic–insulator–superconductor (FIS) interface was investigated through combined experimental and theoretical work [25]. Manifestations of nonlinear features in magnetic dynamics and current–voltage characteristics of the 0 Josephson junction in superconductor
PDF
Editorial
Published 10 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • -superconducting multiterminal structures cross correlations of current noise in different terminals always remain negative [19], such cross correlations may become positive in the presence of superconductivity due to the process of CAR. This conclusion was initially reached theoretically in the limit of low
  • recent work [28]. Usually, an interplay between positive and negative cross correlations of current noise in NSN devices can be controlled and tuned by applying external bias voltages. In this work we suggest another way of controlling Cooper pair splitting: We predict and investigate non-trivial
  • cumulant generating function (χ1,χ2) by means of the formula with χ1,2 being the counting fields, one can express the average currents through the junctions , and the currentcurrent correlation functions in the following form The cumulant generating function in Equation 5 be evaluated in a general form
PDF
Album
Full Research Paper
Published 09 Jan 2023

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • properties have been analyzed by electrical resistance measurements using a standard four-probe technique in a Cryogenic Ltd. CFM9T cryogen-free system. The microstrips were biased with a current of Ib = 10 μA. During the measurements, the error on the temperature value was less than 10 mK. The
PDF
Album
Full Research Paper
Published 05 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • parameters, D, H, W, and the elastomer’s Young’s modulus [40][46]. In current experimental setups, D and H are used to tune the formation of self-collapse-induced structural gaps, but it is reasonable to assume that both W and the elastomer stamp’s physical properties would have impacted the result as well
  • concept on advancing current CLL process resolution through straightforward experimental designs, i.e., interfacial gap creation. To demonstrate the gap manipulation on CLL process capability improvements, a lowered stamp feature height is employed while other structural parameters are fixed. PDMS stamps
PDF
Album
Full Research Paper
Published 04 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • additional processing means, such as mechanical alignment and intensive substrate cooling. The stage of experimental studies of the sample structure is necessary to identify the real structure of the nanocomposite and to compare the data with previously obtained simulation results. This current work is aimed
PDF
Album
Full Research Paper
Published 04 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • formation of standing waves at the electrode/substrate interface. We observe that resonant steps in the current–voltage characteristics appear above some threshold number of junctions, Nth ≈ 100, and then progressively enhance in amplitude with further increment of the number of junctions in the resistive
  • profound step structure in the current–voltage (I–V) characteristics. The resonances are caused by the formation of surface plasmon-type standing waves at the electrode–substrate interface [34]. Thus, the electrodes themselves act as a common external resonator, facilitating the effective indirect coupling
  • steps with small separation in voltage. The linear array, Figure 1d, exhibits several evenly spaced steps. The I–V characteristics are hysteretic, with the retrapping current being significantly smaller than the switching current. The hysteresis leads to a metastability, which allows for the observation
PDF
Album
Full Research Paper
Published 28 Dec 2022

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • positive direction. Large anodic and cathodic currents were observed at around 3.75 and 0.75 V, respectively. Considering their potential positions, the current can be attributed to the oxidation and reduction of Ti ions in the solid electrolyte [16]. The redox potential of Ti ions can be estimated to be
  • about 2.3 V (vs Li/Li+). During the initial potential sweep from 3.2 to 5 V, the anodic current was negligibly small. This is because Ti ions around the Au electrode had not been reduced, thus prohibiting further oxidation of Ti ions. After that, when the potential was swept from 5 to 0 V in the
  • negative direction, a cathodic current due to the reduction of Ti ions started to flow at around 2.8 V (vs Li/Li+). KPFM measurements were performed in the region across the solid electrolyte (Figure 1a). Figure 3a and Figure 3b display the topography and CPD images, respectively, obtained when 0 V was
PDF
Album
Full Research Paper
Published 19 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • mechanical stress is applied. In this work, the transport properties of thin-film layered lead–PDP–lead structures were experimentally studied in a wide temperature range. At sufficiently high temperatures, the current voltage characteristics are satisfactorily described in terms of the injection model of
  • system. Relatively recently it was found that finite electric current can pass also through non-conjugated polymers. In the ground state they are wide-band dielectrics, but can exhibit high electric conductivity under the influence of such external parameters as mechanical stress and/or electric field [1
  • cryogenic temperatures, the current value from 0.1 to 100 μA was chosen so that its increase by an order of magnitude would not lead to a noticeable shift in the temperature of the superconducting phase transition. All experiments were carried out in a 4He direct pumped cryostat. The semiconducting
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • efficiency. Through a comparison of MoS2/TNAs and g-C3N4/TNAs, it was found that TNAs modified with MoS2 and g-C3N4 exhibited a current density of, respectively, 210.6 and 139.6 μA·cm−2 at an overpotential of 1.23 V vs RHE, which is 18.2 and 12 times higher than that of pure TNAs under the same conditions
  • electron–hole recombination [55]. PEC characterizations of materials Figure 6 shows the linear sweep voltammetry (LSV) curves, Tafel slopes, and the photo-response of the samples. Figure 6a shows that the current density of all materials is grows linearly with the applied potential under visible-light
  • excitation. The onset potentials of the of TNAs, g-C3N4, and MoS2 are 0.08, 0.16, and 0.14 V vs RHE, respectively. Further, for the OER (1.23 V vs RHE), the current densities of TNAs, g-C3N4, and MoS2 are 11.5, 4.2, and 31.2 µA/cm2, respectively. The onset potential values of g-C3N4/TNAs and MoS2/TNAs are
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • cyclic voltammograms show that incorporating TiO2 with the MWCNTs leads to a decrease in the electrical double layer, thereby facilitating the electron transfer rate in the TiO2@MWCNTs electrode. Moreover, the current density of the photoelectrochemical electrode formed by TiO2@MWCNTs under solar
  • naturally luminous emittance. The relation of current and potential is recorded under dark (D) and light (L) conditions corresponding to the sunlight intensity below 10 lux and around 100 lux. Photoelectrochemical water splitting performance experiments are carried out under natural sunlight using a two
  • , MWCNTs, and TiO2@MWCNTs electrodes as working electrodes in 0.1 M KCl electrolyte at a sweep rate of 50 mV/s. In Figure 8a, oxidation and reduction peaks are not observed in the CVs in the scanned potential range from −1.0 to +0.2 V. In the CV of the TiO2 electrode, the current decreases significantly at
PDF
Album
Full Research Paper
Published 14 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • improve electrical conductivity and electrochemical performance [5][6][7][9][13][14][15][16][23][24][25][26][27][28][29][30][31][32]. Nanostructured materials can reduce the specific surface current rate as well as improve stability and specific capacity [23][24][25][26][27][28][29]. LiCoO2 has been
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • significantly increased the effective surface area. This facilitated more nucleotide probe attachments and increased signal intensity of the biosensor. The peak current of AuNPs/Gr/SPCE linearly rose with the square root of the scan rate (v1/2) in the range of 0.2–0.389 V1/2 S−1/2, as shown in Figure 3a. This
  • shows that the diffusion process regulates the electrochemical reaction of ferrocyanide. Given that the diffusion coefficient and electrolyte concentration were constant throughout all tests, the effective surface area (A) of the electrode had the greatest influence on the peak current (Ip
  • which accelerated the electron transfer rate of [Fe(CN)6]4−/3−. The DPV of SPCE modified with the AuNPs/Gr nanocomposite exhibited the highest peak current in 2.0 mM K4[Fe(CN)6] compared to that of the bare surface of SPCE (Figure 3c). The DPV peak current values for AuNPs/Gr, AuNPs, and Gr electrode
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • measurement of current–voltage characteristic (IVC) and bolometric analysis of the emitted radiation. In all cases, we observe clear signatures of inter-array interaction. They occur when both arrays are biased at the same voltage and oscillate at the same frequency, coinciding with one of the cavity modes in
  • each strip, allowing for independent biasing of each of these three arrays. Below, we will analyze the interaction between the leftmost “array-a” biased with a variable dc current and “array-b” in the middle biased with a fixed current (Figure 1b). Figure 1c shows the layout of “sample-2”. It has a
  • significantly larger separation of 238 μm between the adjacent linear arrays. In total, it contains 17 similar lines with 380 JJs and a total length of L = 5.7 mm. The junction area is 6 × 6 μm2. Below, we will show data for the case when the rightmost “array-a” is biased with a variable dc current and the
PDF
Album
Full Research Paper
Published 06 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • transitions for better photothermal conversion efficiency [13][14]. In this work, we chose a halogenated BODIPY with good photothermal conversion rate to be grafted onto Au-LNPs for synergistic PTT. In current study, we attempted to create AB-LNPs by simply grafting Au and BDP onto the surface of LNPs. The
PDF
Album
Full Research Paper
Published 02 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • patterns on the surface of a 3D topological insulator (TI) [18]. The Josephson critical current demonstrates damped oscillatory behavior as a function of the thickness of the ferromagnetic layer in SFS Josephson junctions [19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39
  • superconducting hybrid structures. For example, the DOS calculation is essential for the quasiparticle current computation in SIFS (where I denotes an insulating layer) [29][51][53][54][55][56][57] or SFIFS tunneling Josephson junctions [58]. Therefore, computation of the DOS is also needed for many actively
  • spin–orbit scattering on the DOS behavior. Then, we provide a comparison with the exact numerical calculation using a self-consistent two-step iterative method. Furthermore, we briefly discuss the consequences of the different kinds of scattering on the current–voltage characteristics in SFIFS
PDF
Album
Full Research Paper
Published 01 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • separation. The photovoltage was measured to be 0.198 V for MBN-80 which is about 3.3 times more than that of HBN (0.06 V), depicting the superiority of MBN-80. Further, it generated a photo current density of 12.14 µA/cm2 which is three times greater than that of HBN (4 µA/cm2). Photocatalytic study of
PDF
Album
Full Research Paper
Published 22 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • long) infected female insect vectors of the Phlebotomine subfamily (sandflies). It is an endemic disease in tropical and subtropical regions as well as in Southern Europe. According to the current WHO data, 50.000–90.000 new cases of visceral leishmaniasis [17] (the most severe form of this disease
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • considered problem. With respect to the Salvinia hair, the combination of hydrophilic tip and superhydrophobic rest is difficult to realise, and particularly so for the current problem of protecting a metal body from hot iron. The working principle of Salvinia is based on a structural complexity that exceeds
PDF
Album
Perspective
Published 17 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • energy are required to maintain the current lifestyle of the world’s population [1]. Our primary source of clean abundant energy is the sun. The amount of energy received from the sun is about twice of that obtained from all non-renewable resources. Photovoltaic (PV) cells or solar cells are considered a
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • photocatalysts, upgrading the photocatalytic ability, and understanding essential reactions of the photocatalytic process. This paper provides insights into the characteristics of Bi-based photocatalysts, making them a promising future nanomaterial for environmental remediation. The current review discusses the
PDF
Album
Review
Published 11 Nov 2022

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • exponent not significantly different from 1 [45][51]. One explanation for the difference between the current studies and the two former studies is that those included multiple types of toepads [50]. Predicted versus measured frictional adhesive force In addition to the morphological analyses and the
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • ), nanorods (NRs), nanowires (NWs), nanobelts (NBs), nanotubes (NTs), nanoflowers (NFs) and chiral nanostructures [6][7][8][9][10]. Trigonal tellurium (t-Te) MLs have also been recently proposed as a silicon successor for nanoelectronics because of their high hole mobility and current density [3]. Combining
  • nanostructures [11][12][13][14]. Te NTs have shown metallic character and decreasing electrical resistivity with temperature [11]. Te NWs encapsulated in boron nitride nanotubes have shown a large current-carrying capacity and p-type semiconducting characteristics, which can be reversed to n-type behavior after
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • keep its original shape. Low-resistance ohmic contacts between the metal surface and the PdNWCNT probe were confirmed. Moreover, repeated current flow and surface contact did not cause any damage to PdNWCNTs, indicating that the PdNWCNT probe is suitable for multi-probe conductivity measurement. In the
  • and conductive materials at the nanoscale. Slattery et al. [46] describe the use of Pt/Ir conductive tips modified with single-walled carbon nanotubes (SWCNTs), a type of tip suitable for use in conductive imaging mode with high-sensitivity current acquisition AFM, which can also be applied to worn
  • conductive coatings and regenerated broken tips. The Pt/Ir cantilever was modified with small bundles of SWCNTs by a manual attachment process and fixed using a conductive Pt pad. AFM images of the current and topography of the nanomaterial samples and non-homogeneous polymers were collected using this type
PDF
Album
Review
Published 03 Nov 2022
Other Beilstein-Institut Open Science Activities