Search results

Search for "diamond" in Full Text gives 213 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

  • Burak Aksak,
  • Korhan Sahin and
  • Metin Sitti

Beilstein J. Nanotechnol. 2014, 5, 630–638, doi:10.3762/bjnano.5.74

Graphical Abstract
  • ) Illustration of three different wedge angles for the mushroom-tipped fibers with β = 1.2 and θ = 45°. (right) Simulation results for 45° wedge (diamond markers), 90° wedge (square markers), and rounded wedge (circular markers). Supporting Information Supporting Information File 46: Details of mathematical
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2014

Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst

  • Van-Huy Nguyen,
  • Shawn D. Lin,
  • Jeffrey Chi-Sheng Wu and
  • Hsunling Bai

Beilstein J. Nanotechnol. 2014, 5, 566–576, doi:10.3762/bjnano.5.67

Graphical Abstract
  • performed with a JEOL JEM-2100 instrument operating at 200 kV. Thermal gravimetric analysis (TGA, PYRIS Diamond TG-DTA, high temperature 115V) was carried out in the range of 300–773 K. About 30 mg samples were placed in an alumina sample holder and heated under air (20 mL·min−1) with a heating rate of 3
PDF
Album
Full Research Paper
Published 05 May 2014

Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

  • Jinzhang Liu,
  • Marco Notarianni,
  • Llew Rintoul and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 485–493, doi:10.3762/bjnano.5.56

Graphical Abstract
  • different nanoparticles were used: two types of diamond nanoparticles with average diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with mean size of 200 nm. Nanopowder of NDs with mean size of 10 nm (Aldrich Sigma) was dispersed into isopropanol (0.2 mg/mL) to prepare a suspension. An
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2014

Nanoscale particles in technological processes of beneficiation

  • Sergey I. Popel,
  • Vitaly V. Adushkin and
  • Anatoly P. Golub'

Beilstein J. Nanotechnol. 2014, 5, 458–465, doi:10.3762/bjnano.5.53

Graphical Abstract
  • microsize structures. For example, more than thirty years ago, Galimov [5] predicted the possibility of diamond synthesis through a cavitation process. In 2003, this possibility was confirmed in experiments [6]. The particles formed in the cavitation process were an aggregation of nanosize crystallites. The
  • diamond crystals were 10–30 nm in size. The idea of the cavitation mechanism of diamond formation is the following [5]: A narrow canal cavity of varying cross section is formed as a result of the fast motion of fluid going up from the mantle to the surface of the Earth. When the canal cavity dilates or
PDF
Album
Full Research Paper
Published 11 Apr 2014

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

  • Annalena Wolff,
  • Walid Hetaba,
  • Marco Wißbrock,
  • Stefan Löffler,
  • Nadine Mill,
  • Katrin Eckstädt,
  • Axel Dreyer,
  • Inga Ennen,
  • Norbert Sewald,
  • Peter Schattschneider and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2014, 5, 210–218, doi:10.3762/bjnano.5.23

Graphical Abstract
  • stages of the growth process using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and electron diffraction measurements. Results In this bioinspired synthesis, stoichiometric Co2FeO4 discs of hexagonal, diamond
  • oriented substructures within the disc exist. EELS measurements show that incomplete discs, such as the diamond-shaped particle in Figure 3d, are of various non-stoichiometric phases with a compositional gradient. Non-aggregated areas, such as region 1, where crystallites are still visible, are of an iron
  • building blocks fuse at specific crystallographic faces and form a secondary nanoparticle, which is displayed in (d). (a)–(c) Change in the electron diffraction pattern (shown with inverted intensity for better visibility) of diamond shaped particles with time. The dominating reflexes and rings are marked
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2014

Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM

  • Mohamed N. Ghazzal,
  • Robert Wojcieszak,
  • Gijo Raj and
  • Eric M. Gaigneaux

Beilstein J. Nanotechnol. 2014, 5, 68–76, doi:10.3762/bjnano.5.6

Graphical Abstract
  • particles [22]. The sizes of nanoparticles can be estimated from the XPS elemental intensity ratios by using an adequate modeling of the signal. Different XPS models could be applied for the estimation of average particle size [10][23][24]. Based on the diamond-shaped support-particles model described by
PDF
Album
Full Research Paper
Published 20 Jan 2014

Design criteria for stable Pt/C fuel cell catalysts

  • Josef C. Meier,
  • Carolina Galeano,
  • Ioannis Katsounaros,
  • Jonathon Witte,
  • Hans J. Bongard,
  • Angel A. Topalov,
  • Claudio Baldizzone,
  • Stefano Mezzavilla,
  • Ferdi Schüth and
  • Karl J. J. Mayrhofer

Beilstein J. Nanotechnol. 2014, 5, 44–67, doi:10.3762/bjnano.5.5

Graphical Abstract
  • ], nanohorns [29], ordered mesoporous carbons (OMCs) [30][31], carbon aerogels [32], carbon shells [33][34][35][36], colloid-imprinted carbon supports (CIC) [37] and even boron-doped diamond structures [38][39]. Alternatively, certain non-carbon materials (e.g., oxides, carbides and nitrides of metals such as
PDF
Album
Supp Info
Review
Published 16 Jan 2014

Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

  • Matthias Wasem,
  • Joachim Köser,
  • Sylvia Hess,
  • Enrico Gnecco and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2014, 5, 36–43, doi:10.3762/bjnano.5.4

Graphical Abstract
  • 3 μm and 1 μm diamond paste grain size under constant water cooling. The cleaning procedure of the polished tooth enamel was done as described elsewhere [30]. All specimens were stored in a dust-free box and not further processed. A topography image of nanoparticles (A) adsorbed on enamel is
PDF
Album
Full Research Paper
Published 13 Jan 2014

Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale

  • Burcin Özdemir,
  • Axel Seidenstücker,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2013, 4, 886–894, doi:10.3762/bjnano.4.100

Graphical Abstract
  • position stability of the NP, two HRSEM images taken from exact the same location before and after each experiment were compared. For this purpose the surface of the substrate was marked by a diamond tip to observe the changes within a defined lateral window. For accurate analysis, the shift and rotation
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2013

Challenges in realizing ultraflat materials surfaces

  • Takashi Yatsui,
  • Wataru Nomura,
  • Fabrice Stehlin,
  • Olivier Soppera,
  • Makoto Naruse and
  • Motoichi Ohtsu

Beilstein J. Nanotechnol. 2013, 4, 875–885, doi:10.3762/bjnano.4.99

Graphical Abstract
  • substrate can be a serious problem, because substrates with large Ra values induce defects or dislocations in the deposited active layer [4]. Diamond is a promising material for future power devices because of its many excellent characteristics including high values for hardness and thermal conductivity
  • , and excellent semiconductor properties such as a high dielectric breakdown field and a high carrier mobility [5]. However, at the same time, the hardness of diamond makes it difficult to realize a flattened surface, and therefore the performance of diamond devices has not been as good as expected
  • . Furthermore, diamond is also a promising material for future quantum computing, because diamond with nitrogen vacancies can be a stable single-photon emitter at room temperature [6]. However, the high surface roughness of the diamond due to its hardness limits its performance. Conventionally, mechanical
PDF
Album
Review
Published 11 Dec 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • , which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the
  • the minority component [66]. Possible bicontinuous architectures are naturally associated with well known bicontinuous cubic phases (BCPs). Among many BCPs found in block copolymers and concentrated surfactant systems, the double-diamond (DD) structure with the space group , and the Schoen's double
  • pattern, which is largely similar to that formed by the minority phase of the double-diamond structure. The existence of such a specific structural organization can explain in part the surprisingly high ionic conductivity of the hydrated Nafion membrane. Ion pairing The ionic conductivity is to a large
PDF
Album
Full Research Paper
Published 26 Sep 2013

Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni–Fe

  • Jonathan Schäfer and
  • Karsten Albe

Beilstein J. Nanotechnol. 2013, 4, 542–553, doi:10.3762/bjnano.4.63

Graphical Abstract
  • the GB and therefore the necessary increase in GB free volume controls the yield strength of the material. This is consistent with observations made for miscible systems [18] and observations on materials where dislocation slip is completely inactive (ultrananocrystalline diamond), where it was
PDF
Album
Full Research Paper
Published 19 Sep 2013

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

  • Daniel Kiracofe,
  • Arvind Raman and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2013, 4, 385–393, doi:10.3762/bjnano.4.45

Graphical Abstract
  • compression molded into a bar. This was then cryo-cut using a microtome (Ultracut 6, Leica Mikrosysteme GmbH, Vienna, Austria) at −120 °C with a glass and a diamond knife prior to AFM imaging. This sample was chosen because the individual components are well characterized and can be easily distinguished in
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013

Optimal geometry for a quartz multipurpose SPM sensor

  • Julian Stirling

Beilstein J. Nanotechnol. 2013, 4, 370–376, doi:10.3762/bjnano.4.43

Graphical Abstract
  • excited at or near one of its eigenfrequencies, properties such as the Q factor, eigenfrequencies, effective spring constant [1] and other geometrical properties [2] of the eigenmodes become important. AFM and LFM sensors have evolved from gold foil with diamond tip [3] and bent tungsten wires [4
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2013

Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films

  • Patrik Rath,
  • Svetlana Khasminskaya,
  • Christoph Nebel,
  • Christoph Wild and
  • Wolfram H.P. Pernice

Beilstein J. Nanotechnol. 2013, 4, 300–305, doi:10.3762/bjnano.4.33

Graphical Abstract
  • Patrik Rath Svetlana Khasminskaya Christoph Nebel Christoph Wild Wolfram H.P. Pernice Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg, Germany Diamond
  • Materials, Tullastr. 72, 79108 Freiburg, Germany 10.3762/bjnano.4.33 Abstract Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in
  • X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical components remains largely unexplored. Here we demonstrate that CVD diamond provides a high-quality template for realizing nanophotonic integrated optical circuits. Using
PDF
Album
Full Research Paper
Published 07 May 2013

Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study

  • Mudar A. Abdulsattar

Beilstein J. Nanotechnol. 2013, 4, 262–268, doi:10.3762/bjnano.4.28

Graphical Abstract
  • Mudar A. Abdulsattar Ministry of Science and Technology, Baghdad, Iraq; Tel. +964-7901335231 10.3762/bjnano.4.28 Abstract Infrared spectra of hydrogenated diamond nanocrystals of one nanometer length are calculated by ab initio methods. Positions of atoms are optimized via density functional
  • picture of the size dependence of the vibrational spectra, we analyzed the spectra of ethane and adamantane. The present analysis shows that acoustical and optical branches in diamond nanocrystals approach each other and collapse at 963 cm−1 in ethane. Variation of the highest reduced-mass-mode C–C
  • vibrations from 1332 cm−1 of bulk diamond to 963 cm−1 for ethane (red shift) is shown. The analysis also shows the variation of the radial breathing mode from 0 cm−1 of bulk diamond to 963 cm−1 for ethane (blue shift). These variations compare well with experiment. Experimentally, the above-mentioned modes
PDF
Album
Full Research Paper
Published 15 Apr 2013

Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

  • Igor Beinik,
  • Markus Kratzer,
  • Astrid Wachauer,
  • Lin Wang,
  • Yuri P. Piryatinski,
  • Gerhard Brauer,
  • Xin Yi Chen,
  • Yuk Fan Hsu,
  • Aleksandra B. Djurišić and
  • Christian Teichert

Beilstein J. Nanotechnol. 2013, 4, 208–217, doi:10.3762/bjnano.4.21

Graphical Abstract
  • standard ORCA™ C-AFM holder and conductive diamond-coated DCP11™ probes from NT-MDT with a force constant of ≈5.5 N/m. The tip height for probes of this type is ca. 15–20 μm, which implies a restriction to the angle of illumination to the aforementioned 15–20° with respect to the sample surface due to
  • for a pronounced temperature increase at the contact point can be found by comparing the SBHs obtained in a previous study [31]. There, an amplifier with higher gain, allowing lower currents, was used. The SBH between a diamond coated tip and the ZnO NR was determined to be 0.54 eV. The large
PDF
Album
Full Research Paper
Published 21 Mar 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • -emission performance. However, it was demonstrated that a fluorine-based functionalization of carbon nanomaterials such as diamond films [83] or amorphous carbon nanoparticle films [84] increases the yield of the phenomenon. The fluorination of carbon nanofibers [85] and SWCNTs [86] was also underlined
PDF
Album
Review
Published 22 Feb 2013

Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime

  • Aditya Kumar,
  • Thorsten Staedler and
  • Xin Jiang

Beilstein J. Nanotechnol. 2013, 4, 66–71, doi:10.3762/bjnano.4.7

Graphical Abstract
  • during nanoindentation-based scratching has been experimentally investigated by using different surfaces (fused silica and diamond-like carbon) featuring various degrees of roughness. At a sufficiently low applied normal load, wherein the contact is elastic, the friction coefficient is constant. However
  • different roughness values (fused silica (FS) and diamond-like carbon (DLC)) have been carried out. Aside from the normal load, the tip radius of the conical diamond indenter has been varied in these experiments. The friction coefficients were measured and compared to the GW and the KE model as well as the
  • characterization: The mechanical and tribological sample characterization was carried out by a transducer-based scanning nanoindenter (TriboIndenter, Hysitron Inc.) in a laboratory environment (RT and 50% RH). The mechanical properties of the samples were evaluated with a Berkovich diamond tip following the
PDF
Album
Full Research Paper
Published 28 Jan 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • , Stuttgart, Germany Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany 10.3762/bjnano.3.100 Abstract We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the
  • creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon
  • -collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like
  • theoretical calculation of hydrogenated graphite from Allouche et al. [34], full hydrogenation of graphite results in a σ band structure very similar to diamond, an sp3 hybridized carbon allotrope [33][36]. From this point of view, we can claim that this UPS spectrum is the valence band spectrum of
  • hydrogenated HOPG, analogous to cubic diamond. In the next section, it is shown that the surface still has slight corrugation, which could also have a small contribution to the UPS spectrum as the remnant of the broad peak at 7 eV. After soft annealing, the D and D' peaks in the Raman spectrum of the HOPG are
PDF
Album
Full Research Paper
Published 13 Dec 2012

Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

  • Bharat Bhushan,
  • Si Chen and
  • Shirong Ge

Beilstein J. Nanotechnol. 2012, 3, 731–746, doi:10.3762/bjnano.3.83

Graphical Abstract
  • sample surface and the contact angle was measured. Nanoindentation measurements The nanoindentation measurements were made by using a Hysitron Triboscope (Hysitron Inc., Minneapolis, MN) in the constant displacement rate loading mode with a three-sided pyramidal diamond (Berkovich) tip. In this study
PDF
Album
Full Research Paper
Published 08 Nov 2012

The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

  • César Moreno,
  • Carmen Munuera,
  • Xavier Obradors and
  • Carmen Ocal

Beilstein J. Nanotechnol. 2012, 3, 722–730, doi:10.3762/bjnano.3.82

Graphical Abstract
  • force microscopy Scanning force microscopy (SFM) measurements were performed using a commercial head and software from Nanotec [14] under a N2 environment (RH < 5%) to diminish any possible humidity effects. For the conductivity measurements (C-SFM), we used either commercial conductive B-doped diamond
PDF
Album
Full Research Paper
Published 06 Nov 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • the growth of diamond-like carbon (DLC) films with metal additives can be stated [11]. A distinct difference between FEBID and DLC thin-film research is of course that, in most instances, attempts are made to tune the FEBID process such that carbon inclusion in the deposit can be avoided, whereas in
PDF
Album
Video
Review
Published 29 Aug 2012

Nanotribology at high temperatures

  • Saurav Goel,
  • Alexander Stukowski,
  • Gaurav Goel,
  • Xichun Luo and
  • Robert L. Reuben

Beilstein J. Nanotechnol. 2012, 3, 586–588, doi:10.3762/bjnano.3.68

Graphical Abstract
  • near the substrate’s melting point. In this commentary we address a major constraint concerning its experimental verification. Keywords: CBN; diamond; high temperature; Introduction It was postulated some time ago that a component sliding under lightly loaded conditions should experience very low
  • of the diamond tip as a wearless rigid body for ease of computation. Accordingly, it has been suggested [2] that the steep rise in grazing friction and the gradual drop in ploughing friction at high temperatures may affect all materials and should be pursued experimentally [3]. However, diamond is
  • known to exhibit poor thermo-chemo-mechanical stability particularly against low carbon ferrous alloys [4] and at elevated temperatures [5]. It is surprising, but true, that diamond, the hardest material available (until the commercial realization of beta carbon nitride β-(C3N4) [6]), wears out rapidly
PDF
Album
Commentary
Published 15 Aug 2012
Other Beilstein-Institut Open Science Activities