Search results

Search for "diffusion" in Full Text gives 663 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • the diffusion constant in the normal metal and Tc is the transition temperature. When a superconductor S is combined with a ferromagnetic layer F, forming an SF bilayer, the superconductivity leaks into the ferromagnetic region over the characteristic length ξh = where Df is the diffusion constant in
  • l is much smaller than the superconducting coherence length ξ = where Ds is the diffusion constant in the superconductor. Previously, the DOS in SF bilayers has been studied numerically [84][85]. We revisit this question and propose an analytical model to describe the influence of spin-flip and
  • is the conductivity of the F layer [88][89], ξf = Df is the diffusion coefficient in the ferromagnetic metal, and Tc is the critical temperature of the superconductor [1][2]. We assume ℏ = kB = 1. We also assume that the SF interface is not magnetically active. We will consider the diffusive limit
PDF
Album
Full Research Paper
Published 01 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • matrix. A value of β ≤ 0.75 indicates Fickian diffusion, while 0.75 < β < 1 indicates a combination of Fickian diffusion and controlled release [59]. The β value for the Weibull model was calculated as 0.594 for the DCX-PLGA NPs. According to the literature, when these data are examined within the scope
  • of the Weibull model, the DCX release kinetics from DCX-PLGA nanoparticles were found to be compatible with Fickian diffusion [60]. This shows that in the model-dependent baseline evaluation of in vitro release profiles, the drug adsorbed on the nanoparticle surface or encapsulated in the
  • nanoparticle material is released from the polymeric structure on the basis of diffusion as the major mechanism. It has been confirmed by mathematical modeling that the release is based on diffusion [10][61]. In contrast, the Peppas–Sahlin model describes the drug release from CS/DCX-PLGA NPs. The Peppas
PDF
Album
Full Research Paper
Published 23 Nov 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • nitrogen it is approx. 6.90 × 10−6 mol/(m3·Pa). Equating Henry’s law volatility constant for air, one gets approx. 1.27 m3·Pa/mol. Da is the diffusion constant of air in water which is 2.5 × 10−5 cm2/s [55], R is the gas constant and T the absolute temperature. 3 Underwater air retention and its
  • surface energy (see section 2). If they are submerged deeper than 2 cm, the air layer gets lost over time due to diffusion effects. To confirm the predicted persistence of the air layer in a water depth below 2 cm samples have been submerged in a depth of about 5 mm for two weeks. The analysis of these
  • MSM and to analyze their pressure and diffusion behavior, measurements under static pressure in a custom-made pressure chamber and again by using CLSM were carried out. The principle of these measurements is described in the experimental section and shown in Figure 4. By applying a constant pressure a
PDF
Album
Full Research Paper
Published 21 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • = r2/π2D, where r is the grain radius and D is the carrier’s diffusion coefficient. Consequently, as the particle radius decreases, a higher number of photogenerated carriers can reach the surface, where they might participate in a photocatalytic process [76]. Bismuth is often used as a nanoscale
PDF
Album
Review
Published 11 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • in the pharmaceutical industry. It has been taken as a model molecule to verify the “proof-of-principle” concept for chiral recognition [28]. Kim and co-workers fabricated ʟ-phenylalanine (ʟ-Phe)-modified QCM sensor and used vapor diffusion molecular assembly (VDMA) to study the chiral adsorption of
  • adsorptions of ʟ-MA, ᴅ-MA, and ʟ/ᴅ-MA racemates on the ʟ-Phe sensing layers was monitored through the evaporation diffusion of the solutes. The QCM results indicated that the ʟ-Phe-modified sensor surface had selective chiral recognition ability to MA. Through the control of different VDMA periods and
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • occurs when a liquid is in contact with a solid with a surface charge. This interaction is mainly dominated by the electric double layer (EDL), which consists of a layer of ions (Stern layer) that is tightly adsorbed to the charged surface and a layer of counter ions (diffusion layer) that is attracted
  • to the surface charges. When the liquid moves in the microchannel, it will drag the diffusion layer ions to form a flowing current, thus creating a potential difference, namely the flowing potential between the two ends of the channel. In nanochannels, approximating the channel geometry to be
  • the device provided an instantaneous electrical output with a maximum open-circuit voltage of 0.3 V and a short-circuit current of 120 μA. After adding a conducting polymer to improve the number of charged ions and the ion selectivity of the diffusion channel, a specific electrolyte fluid was selected
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • vascular endothelium with tight junctions hampering the permeation of active ingredients to the intraocular area. When designing non-invasive ophthalmic drug dosage forms, the main aim is to improve the bioavailability by increasing the diffusion across sclera, cornea, and conjunctiva [42]. In the case of
  • advantage of soluble inserts is that they do not have to be removed from the eye. The rate of drug release is influenced by dissolution or erosion of the polymer matrix. Ophthalmic therapeutic systems belong to the group of non-biodegradable inserts from which the drug substance is released by diffusion at
  • microneedles containing an empty canal inside are usually filled with active ingredient solution, either passively or with the use of pressure-driven methods [161]. In the systems using passive diffusion, the drug solution can be loaded to the canals inside the microneedles [141] or to an external compartment
PDF
Album
Review
Published 24 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • had surface groups such as carboxyl and hydroxy groups. Aloe vera has intrinsic antimicrobial properties, so the bactericidal activity of these CDs was investigated by the agar well diffusion method, and the sensing ability towards Fe3+ was also reported [67]. Kavitha et al. used date palm fronds with
  • honey, garlic, and ammonia as green source, sulfur source, and nitrogen source, respectively to prepare N,S-CDs via a simple hydrothermal technique. The Z-scan methodology was used for non-linear optical characterization and the agar well diffusion methodology was used to explore the antimicrobial
PDF
Album
Review
Published 05 Oct 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • potential, and diffusion limiting current density (JL). ACC-2 has the highest positive onset potential of the electrocatalysts. The decreasing order of onset potential is ACC-2 (0.94 V) > ACC-3 (0.92 V) > ACC-1 (0.91 V) > Ag-Co3O4 (0.90 V) > Ag-CuO (0.86 V) > ACC-2* (0.85 V). The kinetics of all trimetallic
  • sharp slope in the low-frequency region, representing little ionic diffusion resistance from the 0.1 M KOH solution to the Ag electrode surface throughout the ORR process (Figure 4d). The excellent electrocatalytic ORR activity of ACC-2 may originate from the composition and synergistic effects of
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • common, but often undesirable occurrence on surfaces irradiated with EB [22][23]. In high-vacuum conditions, hydrocarbons tend to get adsorbed onto the surfaces of vacuum chamber or samples, where they can move via thermally activated diffusion. Cooling the surface can immobilize any adsorbed molecules
  • chamber, the growth rate of the nanostructures was cut by about a half and slowly recovered over time, as hydrocarbon concentrations returned to normal levels. The results from Figure 7 support the theory about EB-induced carbon diffusion within the metal substrate and may provide hints of the carbon
  • distribution there. Under the assumption that carbon and carbon-containing silver areas are more susceptible to N plasma etching, we could theorize that carbon atoms in this particular case have reached up to 140 nm deep within the Ag layer. The carbon diffusion could have been caused by a number of reasons
PDF
Album
Full Research Paper
Published 22 Sep 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • . For the clean sample, the amorphization depth linearly evolves until the implanted argon atoms reach a saturation concentration due to the diffusion and desorption of excess atoms. In the contaminated sample, the observations are similar for argon and for the contaminants, and hydrogen is implanted
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • be used to generate self-assembled membranes, allowing for the adhesion of endothelial cells on the one side and smooth muscle cells on the other side, as well as the diffusion of relevant molecules, making this material promising for vascular tissue engineering [170]. In addition to flat films or
PDF
Album
Review
Published 08 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • measurements and for modeling by ab initio calculations. Periodic and compact films are generally obtained when the molecules possess enough surface mobility, that is, when the diffusion energy (Ed) is low compared to the thermal energy kBT, where T is the substrate temperature and kB is the Boltzmann constant
  • directly on either the Fe(001) or Fe(001)–p(1 × 1)O surfaces. In the former case, the diffusion of C60 is completely hindered and fullerene forms a disordered film, while in the latter case a peculiar mode of growth, intermediate between diffusion-mediated and ballistic growth, is observed [23][50]. Figure
  • promotes the surface diffusion of C60 and the growth of a crystalline film at room temperature. The large HOMO–LUMO gap and the negligible charge transfer at the interface indicate that C60 is electronically decoupled from the substrate. The C60/ZnTPP/Fe(001)–p(1 × 1)O multilayer represents a paradigmatic
PDF
Album
Full Research Paper
Published 30 Aug 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • with large (tens of nanometer) layer thicknesses [40][44][45]. It is our hypothesis that itinerant electron spin diffusion could bring the PM areas into equilibrium with the FM environment and is an origin of the 10 ps transient. Indeed, the diffusion velocity across the length of ≈1 nm on a time scale
  • of 10 ps can be estimated as 10−9 m/10−11 s = 100 m/s. For the conventional spin diffusion, the spin memory length is where is the diffusion coefficient, τs is the Elliott–Yafet spin-relaxation time [46][47], τ is the charge transport relaxation time, and vF is the Fermi velocity. For the purpose
  • of order-of-magnitude estimation we define the spin-diffusion velocity vs as from which Modern band-structure calculations [48][49] show that more than 95% of the electron density of states at the Fermi energy comes from the itinerant 4d electrons. The Fermi velocity of 3d electrons in iron-group
PDF
Album
Full Research Paper
Published 25 Aug 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • the wax on both epidermis and stomata contributes to the resistance of water vapor diffusion from the mesophyll to the outside and to the control of cuticle transpiration, reducing in this way the water loss by the leaf blade [9]. Also, authors associated the epicuticular wax on leaves along with
PDF
Album
Full Research Paper
Published 22 Aug 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • nanoparticles as anode materials to promote the rapid diffusion and electron transfer of lithium, and Rongjun Zhao prepared n-butanol gas sensors with one-dimensional In2O3 nanorods [1][2]. Different from 2D materials, 1D materials generally have a chain-like crystal structure and are easily exfoliated due to a
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • clusters (PNCs), transition phases, and actual second building units (SBUs) in the prenucleation and growth steps (Figure 1). Transition and attachment of these species are not only controlled by thermodynamics but also strongly depend on kinetics. The decisive factors involve diffusion, local flow, and
  • defined structures and flow characteristics. Thus, they are good experimental tools for the observation of crystallization process. The interfaces among the laminar fluids in microfluidic channels can be recognized as soft boundaries of crystallization zones. In the reaction–diffusion zone confined by
  • diffusion zone could be defined, leading to diffusion-limited and kinetically controlled environments. Nonequilibrium crystal morphologies were observed. Needles were found to assemble into frames, which were subsequently woven into plate-like single crystals. The channel walls of microfluidic reactors are
PDF
Album
Review
Published 12 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • is the electrode active area (cm2), Dr is the diffusion coefficient (7.6 × 10−6 cm2·s−1), and C0 is the concentration of K3Fe(CN)6 (mol·cm−3). From the slope of the plot of Ip vs ν1/2, the effective surface area for bare GCE and ERGO/GCE was calculated to be 0.0707 and 0.121 cm2, respectively, which
  • microstructures of ERGO, which makes the graphene sheets more accessible to the electrolyte. It also facilitates electron transfer and diffusion of ions during the electrochemical process [28][34]. Electrochemical behavior of parathion at modified nanosensors Figure 5A depicts the CVs (first cycle) of bare GCE
  • the scan rate suggests a surface-confined diffusion-controlled electrocatalytic process [21]. The slope of log Ipc as a function of log ν is 0.611 (>0.5), which confirms an adsorption-based reduction of PT on the modified electrode surface (Figure 7B). The reduction peak potential was shifted towards
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • features as band bending [3][4], the lifetimes of excited carriers [5][6][7], the minority carrier diffusion length [8][9], and the plasmonic effect [10][11][12]. The local SPV is usually measured by Kelvin probe force microscopy (KPFM) [13][14][15][16][17][18][19][20][21], which is based on atomic force
PDF
Album
Full Research Paper
Published 25 Jul 2022

Design and selection of peptides to block the SARS-CoV-2 receptor binding domain by molecular docking

  • Kendra Ramirez-Acosta,
  • Ivan A. Rosales-Fuerte,
  • J. Eduardo Perez-Sanchez,
  • Alfredo Nuñez-Rivera,
  • Josue Juarez and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2022, 13, 699–711, doi:10.3762/bjnano.13.62

Graphical Abstract
  • to be in the range of 43% to 65% of the size of the ACE2 peptide. Therefore, the diffusion of these peptides is faster. These results show the potential of the selected peptides to inhibit SARS-CoV-2, considering that their smaller size and faster diffusion will allow them to find the virus faster
  • peptides) and faster design of peptides (41 peptides) based on the peptide binding site on the RBD, the number of hydrogen bonds, and the binding affinity. The peptide candidates have a nearly neutral charge at physiological pH and good solubility, which can benefit the diffusion of the molecules, allowing
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • large surface area to offer abundant active sites for the electrochemical reactions and a large pore volume for effective accommodation of Li2O2 [7][8]. If accumulated Li2O2 is not completely decomposed during the charge, the reaction sites and diffusion pathways of electrolytes and oxygen species are
  • sufficient diffusion pathways for oxygen and electrolyte in the cathode. The ratio of Zn/Co in the starting materials greatly affects the microstructure and porosity of the resulting bimetallic ZIF–carbon/CNT composites. The correlation between the microstructure and the electrochemical performance of the
  • which the highly porous ZnxCoy–C particles are beneficial for facilitating the electrochemical reactions between Li+ and O2. Moreover, CNT networks allow for sufficient electronic conduction as well as diffusion pathways for O2 and electrolyte in the composites. The atomic ratios of Zn and in the Zn1Co4
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • = e2/h is the conductance quantum, and G = σNA/d is the conductance of the film (in the direction perpendicular to the interface of cross section A). D and σN are the diffusion constant and the normal-state conductivity of the film, respectively. Note, that due to the normalization condition for
PDF
Album
Full Research Paper
Published 20 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • BBR NPs in water. Antibacterial activity The antibacterial activity of pure BBR and BBR NPs prepared at different concentrations against MRSA and E. coli O157:H7 was compared in vitro using the modified disk diffusion method. Figure 4 and Table 1 show the inhibitory zones of pure BBR (at the
  • NPs by colony counting was more reliable than by the modified disk diffusion method. This finding can be explained by the low diffusion of BBR NPs on the agar surface. BBR NPs interacted more with bacteria in the nutrient broth for the colony counting method. BBR NPs with a high surface-to-volume
  • sectioning for TEM observations. We did not find any difference in ultrastructural changes of E.coli O157:H7 cells treated with and without BBR NPs, whereas significant differences were found in MRSA cells after treatment with BBR NPs. This is consistent with results obtained using the disk diffusion method
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • on the skin showing no penetration using the commercial applicator, c) MN penetration and fluorescein diffusion into the skin, using the custom-made impact applicator at 3 m/s impact velocity, d) as c) for 4.5 m/s impact velocity. Stereomicroscopy images for the estimation of APE using the custom
PDF
Album
Full Research Paper
Published 08 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • results [44]. Moreover, in earlier research, authors investigated the rheological and diffusion properties of a CuO nanofluid in water-based systems [45]. The present study is a continuation of that research and is focused on predicting the thermal conductivities of CuO nanoparticles in aqueous and
  • nanoparticles shows high diffusion in water-based systems (i.e., around 4.5 × 10−9 m2/s) [45], in comparison to alkanes/polar (i.e., nonaqueous, around 4.35 × 10−11 m2/s) systems [52], as investigated by the two previous studies. This is further confirmed by a study by Abid et al. [53] in which various
  • parameters (including dimensionless velocity) for water/CuO and kerosene/CuO were calculated using MATLAB. They found that water/CuO nanofluids have a much higher velocity than kerosene/CuO systems. Therefore, both the previous study by the authors regarding diffusion coefficient and the Abid et al. study
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022
Other Beilstein-Institut Open Science Activities