Search results

Search for "electrolyte" in Full Text gives 278 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

First-principles study of the structure of water layers on flat and stepped Pb electrodes

  • Xiaohang Lin,
  • Ferdinand Evers and
  • Axel Groß

Beilstein J. Nanotechnol. 2016, 7, 533–543, doi:10.3762/bjnano.7.47

Graphical Abstract
  • liquid on properties of the metal [1]. The importance of understanding the electrochemical behavior of electrode and electrolyte near the interfaces is well illustrated by two recent examples. (i) In recent experiments on molecular break junctions it was found that certain molecules (methyl-sulfide
  • electrode/electrolyte interfaces based on first-principles electronic structure calculations. As Pb has been used as one of the metallic electrode materials, we have already studied the Pb self-diffusion on flat and stepped Pb surfaces [13] as this controls the growth mechanism of the contacts. The results
PDF
Album
Full Research Paper
Published 11 Apr 2016

Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

  • Dorota Matyszewska

Beilstein J. Nanotechnol. 2016, 7, 524–532, doi:10.3762/bjnano.7.46

Graphical Abstract
  • , Poland) was used as a supporting electrolyte. Results and Discussion Monolayer studies at the air–water interface In order to study the influence of daunorubicin in a free form and attached to carbon nanotubes as potential drug carrier, Langmuir technique has been employed. Drug in a free form was
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids
  • media like dissolution, adsorption, binding, and aggregation, all influencing biological impacts by affecting reactive oxygen species generation, cellular uptake and NP biodistribution [15][16][17][18]. Metallic NPs usually aggregate in media with high electrolyte content that correspond to biological
  • fluids [19][20][21][22][23][24][25][26][27]. NP agglomeration is intended in some applications, such as in immunoassays [28], while many others require stable colloidal dispersions of NPs at high physiological ionic strength [29]. Stabilization of metallic NPs at high electrolyte content, i.e., in
PDF
Album
Full Research Paper
Published 15 Feb 2016

Mismatch detection in DNA monolayers by atomic force microscopy and electrochemical impedance spectroscopy

  • Maryse D. Nkoua Ngavouka,
  • Pietro Capaldo,
  • Elena Ambrosetti,
  • Giacinto Scoles,
  • Loredana Casalis and
  • Pietro Parisse

Beilstein J. Nanotechnol. 2016, 7, 220–227, doi:10.3762/bjnano.7.20

Graphical Abstract
  • rinsed with the buffer solution used for the measurements, 100 mM KCl, and the capacitance at the electrode/electrolyte interface was measured. In the hybridization step the cell is filled with a drop of the same hybridizing buffer solution, 100 mM KCl, containing the complementary or partially
  • electrode/electrolyte interface, allowing for the extraction of the differential capacitance simply from a linear fit of Irms. The functionalized electrodes can be regenerated after the hybridization process by means of a thermal treatment in TE buffer (pH 9) for 1 h in oven at a temperature 10 °C higher
  • representation of the electrode/electrolyte interface. The first layer in contact with the gold electrode is the ssDNA self-assembled monolayer, modelled as a capacitance CssDNA. Then we have the ions present in solution that arrange in response to the gold and DNA charges forming the so-called double layer
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Single pyrimidine discrimination during voltage-driven translocation of osmylated oligodeoxynucleotides via the α-hemolysin nanopore

  • Yun Ding and
  • Anastassia Kanavarioti

Beilstein J. Nanotechnol. 2016, 7, 91–101, doi:10.3762/bjnano.7.11

Graphical Abstract
  • pore embedded in an insulating surface that separates two compartments filled with electrolyte. A nucleic acid in one compartment can move through the pore to the other compartment influenced by the electric field and the interactions with the pore, and concurrently modulate the current. Protein pores
  • , University of Utah. The KCl solution was used as the electrolyte to fill the solution reservoir and the GNM capillary. A voltage was applied across the GNM between two Ag/AgCl electrodes placed inside and outside of the capillary. A lipid bilayer was deposited across the GNM orifice as indicated by a
PDF
Album
Full Research Paper
Published 22 Jan 2016

Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2016, 7, 22–31, doi:10.3762/bjnano.7.3

Graphical Abstract
  • immersed in the electrolyte solution (0.05 M in 5 mL) of vacuum dried tetraoctylammonium chloride (TOAC), which acts both as electrolyte and Au NPs stabilizer, in anhydrous tetrahydrofuran (THF) and acetonitrile (ACN) mixed in 3:1 ratio. The dried ZnO powder (about 1 g) was added as support particles into
  • 300 °C, the spherical structures and the residual presence of electrolyte on Au NPs surfaces influence the gas-sensing response, yielding the worst sensor response towards NO2. Future work will be addressed to electrochemically functionalize ZnO nanocomposites with other noble metals, such as Pd, to
PDF
Album
Full Research Paper
Published 08 Jan 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • surface of NPs which is responsible for the electrostatic repulsion and consequently stability at wide range of pH (2–10) and electrolyte concentration (up to 10−2 M of NaCl) [63]. Thekkae Padil and Cernik used gum karaya (GK) to produce copper oxide (CuO) NPs from CuCl2 at 75 °C for 60 min. According to
PDF
Album
Review
Published 10 Dec 2015

Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method

  • Mikalai V. Malashchonak,
  • Alexander V. Mazanik,
  • Olga V. Korolik,
  • Еugene А. Streltsov and
  • Anatoly I. Kulak

Beilstein J. Nanotechnol. 2015, 6, 2252–2262, doi:10.3762/bjnano.6.231

Graphical Abstract
  • observed for the heterostructures is attributed to the charge carrier photogeneration in CdS NPs followed by the transfer of photoelectrons into the oxide matrix, whereas the photoholes are trapped by sulphite ions, SO32−. Sulfide ions S2− in the electrolyte reduce the solubility of CdS and facilitate its
  • . The synthesis of the titanium dioxide nanotube arrays was carried out in a two-electrode electrochemical cell by anodization of metallic titanium with a graphite counter electrode in an aqueous electrolyte containing 1 mol/L (NH4)2SO4, 0.1 mol/L NH4F and 0.2 mol/L H2C2O4 with pH 2.8 (corrected with
  • water, air-dried and heat-treated at 450 °C for 1 h in air. Mesoporous zinc oxide films were prepared by the electrochemical cathodic deposition from water–ethanol (1:1 by volume) electrolyte containing 0.1 mol/L Zn(NO3)2, 0.1 mol/L KCl and 4 g/L poly(vinylpyrrolidone) at 50 °C [18][38]. Deposition was
PDF
Album
Full Research Paper
Published 30 Nov 2015

Electroviscous effect on fluid drag in a microchannel with large zeta potential

  • Dalei Jing and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2015, 6, 2207–2216, doi:10.3762/bjnano.6.226

Graphical Abstract
  • EDL is first analytically solved. Then, the modified Navier–Stokes equation for the flow considering the effect of surface charge on the electrical conductivity of the electrolyte and slip length is analytically solved. This analysis is used to study the effect of non-overlapping EDL with large zeta
  • is the characteristic thickness of EDL, and is given by [5], where ε is the dielectric constant of the electrolyte, ε0 is the vacuum permittivity, kB is the Boltzmann constant, T is the absolute temperature, n0 is the bulk ionic concentration of the symmetric electrolyte, z is the valence of the ions
  • electroosmotic and pressure-driven flow in a microchannel with no slip condition. In addition, the electrical conductivity of the electrolyte is related to the ionic concentration of the electrolyte, thus, the ions redistribution caused by the charged solid–liquid interface results in the change of the
PDF
Album
Full Research Paper
Published 24 Nov 2015

Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

  • Amirreza Shayganpour,
  • Alberto Rebaudi,
  • Pierpaolo Cortella,
  • Alberto Diaspro and
  • Marco Salerno

Beilstein J. Nanotechnol. 2015, 6, 2183–2192, doi:10.3762/bjnano.6.224

Graphical Abstract
  • the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with
  • the whole process as either potentiostatic or galvanostatic. During this process the conditions may change, making one target value easier to attain than the other at a given electrolyte conductivity and temperature. Within intermediate ranges of the above quantities (e.g., 20–180 V and 0.1–1.5 A
  • concentration as high as ≈10 at %. In fact, from APA fabrication, it is also known that some amount of electrolyte anions (typically 3–8 wt %) are incorporated into the porous oxide during anodization [6]. The same applies also for the anodization of Ti, and thus the observed P has to be ascribed to phosphate
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2015

Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data

  • Beti Andonovic,
  • Abdulakim Ademi,
  • Anita Grozdanov,
  • Perica Paunović and
  • Aleksandar T. Dimitrov

Beilstein J. Nanotechnol. 2015, 6, 2113–2122, doi:10.3762/bjnano.6.216

Graphical Abstract
  • thickness distribution is used to calculate theoretical 002 X-ray diffraction (XRD) peak intensities. An analysis was performed upon graphene samples produced by two different electrochemical procedures: electrolysis in aqueous electrolyte and electrolysis in molten salts, both using a nonstationary current
  • presented in this work is the following: graphene samples obtained by electrolysis in molten salts are denominated GMSE1, GMSE3 and GMSE4, and graphene samples produced by electrolysis in aqueous electrolyte are denominated GAE1 and GAE2. Results and Discussion The XRD pattern of each of the samples was
  • position method of calculation. Graphene produced by electrolysis in aqueous electrolyte and the model in Equation 1 Graphene samples GAE1 and GAE2 produced by electrolysis in aqueous solution from two different raw graphite materials, using nonstationary current regime, are analyzed here. Typical TEM
PDF
Album
Full Research Paper
Published 06 Nov 2015

Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles

  • Gabriela Ramos Chagas,
  • Thierry Darmanin and
  • Frédéric Guittard

Beilstein J. Nanotechnol. 2015, 6, 2078–2087, doi:10.3762/bjnano.6.212

Graphical Abstract
  • -electrode while saturated calomel (SCE) was taken as reference electrode. The electrolyte used was a 0.1 mol solution of tetrabutylammonium perchlorate (Bu4NClO4) in anhydrous acetonitrile. Before the electrodeposition, the solution was degassed under argon and 0.01 mol of monomer was introduced. After the
PDF
Album
Full Research Paper
Published 28 Oct 2015

Electrochemical behavior of polypyrrol/AuNP composites deposited by different electrochemical methods: sensing properties towards catechol

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Cristina Medina-Plaza,
  • Fernando Martín-Pedrosa,
  • Yolanda Blanco,
  • José Antonio de Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2015, 6, 2052–2061, doi:10.3762/bjnano.6.209

Graphical Abstract
  • to the irreproducibility and therefore conclusions could not be deduced. The irreproducibility observed in stainless steel can be clearly attributed to pitting processes produced by chloride ions. In consequence, reproducibility could be improved by changing the supporting electrolyte. According to
  • this idea, the influence of the supporting electrolyte was further investigated using phosphate buffer. As expected, the large size and high charge of the phosphate anions, made difficult the diffusion of anions inside the polymeric film producing a broadening of the peaks and the increase in the
  • stainless steel, caused by pitting process can be avoided by using phosphate buffer as supporting electrolyte. As an electrochemical sensor, the Ppy/AuNP deposited on platinum exhibited important electrocatalytic activity towards the oxidation of catechol. The effect was higher in films obtained by CP than
PDF
Album
Full Research Paper
Published 21 Oct 2015

Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations

  • Aldo S. Gago,
  • Juan-Pablo Esquivel,
  • Neus Sabaté,
  • Joaquín Santander and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2015, 6, 2000–2006, doi:10.3762/bjnano.6.203

Graphical Abstract
  • such as alkaline, microfluidic or bio-fuel cells. Thus, the design and micro-fabrication of parts and components such as current collectors, fuel reservoir, gas diffusion layers (GDL), the electrolyte membrane, and of course, the electrode catalysts, can be improved. The applied characterization
PDF
Album
Full Research Paper
Published 07 Oct 2015

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • reaction). The equilibrium potential of the cell is deduced from the half reaction (Equation 4 and Equation 5) and the sum reaction (Equation 6). Hess’s law gives: With a lithium activity a(Li) = 0, and a lithium ion concentration [Li+] = 1 M ([Li+] inside the electrolyte), the equilibrium potential of
  • discharge curves of MgH2, TiH2 [10], NaH involve two and one lithium respectively for two and one hydrogen [11]. Values superior to the number of hydrogen atoms x can, however, be reached in relation with either a plateau corresponding to the electrolyte decomposition on carbon at 0.8 V or with a metal
  • -ray diffraction pattern obtained at the end of the discharge shows the presence of both Mg0.65Sc0.35H0.8 and Mg0.65S0.35H1.5 cubic phases in agreement with the results obtained in KOH electrolyte and reported by Notten et al. [28]. Such desirable electrochemical behavior is also obtained with the
PDF
Album
Review
Published 31 Aug 2015

Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

  • Sanghoon Ji,
  • Waqas Hassan Tanveer,
  • Wonjong Yu,
  • Sungmin Kang,
  • Gu Young Cho,
  • Sung Han Kim,
  • Jihwan An and
  • Suk Won Cha

Beilstein J. Nanotechnol. 2015, 6, 1805–1810, doi:10.3762/bjnano.6.184

Graphical Abstract
  • electrolyte, the electrode, and the fuel, length and disturb the inflow of fuel at bottom electrode catalyst (BEC) side by excessive infiltration into the fuel channel [7][8]. Study on the thickness of the BEC, which could mitigate the infiltration issue, is therefore crucial in realizing the reliable TF-SOFC
  • . Results and Discussion Highly dense ALD thin film electrolyte Thin films fabricated via low-temperature vacuum deposition techniques typically have lower packing density than powder-processed thin films due to the presence of high density of grain-boundaries inside the thin films [9][10]. The density
  • coated on the AAO substrate prior to the electrolyte deposition for the anode side current collection and catalytic reaction. We considered the reaction kinetics at the BEC–electrolyte interface and fuel transport through AAO pores as the main design parameters in BEC coating. To investigate the effects
PDF
Album
Full Research Paper
Published 27 Aug 2015

Materials for sustainable energy production, storage, and conversion

  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2015, 6, 1601–1602, doi:10.3762/bjnano.6.163

Graphical Abstract
  • chemical carriers are discussed in two contributions covering materials issues in two different types of fuel cells: Gregorii L. Soloveichik reports on challenges and perspectives in the field of liquid fuel cells [2]. Materials issues in polymer electrolyte membrane fuel cells operating at moderately
PDF
Editorial
Published 23 Jul 2015

Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

  • Zitao Zhou,
  • Jino Son,
  • Bryan Harper,
  • Zheng Zhou and
  • Stacey Harper

Beilstein J. Nanotechnol. 2015, 6, 1568–1579, doi:10.3762/bjnano.6.160

Graphical Abstract
  • the remainder of the coated particles in the PCA. In contrast, the remaining surface functionalized particles all had much lower log D values (Table 2) and clustered together in our analysis. The Log D calculations can be affected by electrolyte concentration, however in our study this was too small
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2015

Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

  • Klara Altintoprak,
  • Axel Seidenstücker,
  • Alexander Welle,
  • Sabine Eiben,
  • Petia Atanasova,
  • Nina Stitz,
  • Alfred Plettl,
  • Joachim Bill,
  • Hartmut Gliemann,
  • Holger Jeske,
  • Dirk Rothenstein,
  • Fania Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2015, 6, 1399–1412, doi:10.3762/bjnano.6.145

Graphical Abstract
  • addition, the increased electrolyte concentrations in the buffer lead to an enrichment of counter ions in the proximity of the TMV nanorods and thus a steeper decrease of the potential within a shorter distance from their surface (decrease of the Debye length). Therefore, ZP values measured in ddH2O are
PDF
Album
Full Research Paper
Published 25 Jun 2015

Scalable, high performance, enzymatic cathodes based on nanoimprint lithography

  • Dmitry Pankratov,
  • Richard Sundberg,
  • Javier Sotres,
  • Dmitry B. Suyatin,
  • Ivan Maximov,
  • Sergey Shleev and
  • Lars Montelius

Beilstein J. Nanotechnol. 2015, 6, 1377–1384, doi:10.3762/bjnano.6.142

Graphical Abstract
  • electrolytes) and quantitative (monitoring of the enzyme layer on Au surface using ellipsometry) studies were performed. In both measurements no indication of BOx desorption from the Au surface was observed. Specifically, no colour difference between the electrolyte (20 mL of PBS, pH 7.4) used in the
  • potentiostat/galvanostat from MetrohmAutolab B.V. (Utrecht, The Netherlands) using Au-plated alligator clips (model 3289-2, Pomona Electronics, Everett, WA, USA). These were placed into a standard electrochemical cell with a final electrolyte volume of 20 mL and subjected to an oxidation–reduction cycle in 0.5
  • the electrochemical studies, additional tests concerning residual BOx activity in the electrolytes due to possible enzyme desorption from the electrode surface were performed. For this purpose 20 mL of an electrolyte, which was in contact with BOx-modified electrodes (i.e., after electrochemical
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2015

Nanomechanical humidity detection through porous alumina cantilevers

  • Olga Boytsova,
  • Alexey Klimenko,
  • Vasiliy Lebedev,
  • Alexey Lukashin and
  • Andrey Eliseev

Beilstein J. Nanotechnol. 2015, 6, 1332–1337, doi:10.3762/bjnano.6.137

Graphical Abstract
  • Preparation of the cantilever array AAO layer formation was carried out in 0.3 M H2C2O4 (98%, Aldrich) at a constant voltage of 40 V. The electrolyte was pumped through the two-electrode cell by a peristaltic pump, and its temperature was kept constant (2 °C) during anodization. The films with a thickness of
PDF
Album
Full Research Paper
Published 16 Jun 2015

Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

  • Ina Schubert,
  • Loic Burr,
  • Christina Trautmann and
  • Maria Eugenia Toimil-Molares

Beilstein J. Nanotechnol. 2015, 6, 1272–1280, doi:10.3762/bjnano.6.131

Graphical Abstract
  • growth of many different segmented structures combining polymers, semiconductors, and metals, such as Au–TiO2 [11], Au–polypyrrole [22], Cu–Se [23], and Au–Co [24]. While segmented nanowires can be grown by sequential exchange of the electrolyte [8][25][26], it is also possible to use a single
  • electrolyte and control the composition of the segments by tuning reduction potential and electrolyte composition [27][28][29][30]. The segment lengths are adjusted by the amplitude and length of the applied pulse [27][30][31]. Being able to fabricate a very large amount of wires with excellent control over
  • using a single electrolyte. In particular, we aim at controlling all segment sizes. We analyze the segment size distribution in detail and discuss the deposition conditions needed to fabricate very small nanogaps by subsequent etching of the middle Ag-rich segments in nitric acid. We apply cyclic
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • hexafluorophosphate (TBAPF6) was used as a supporting electrolyte (0.1 M) and CH2Cl2 was used as the solvent. The concentration of the samples was 1.0 × 10−4 M, and the solutions were degassed with argon prior to the measurements. A scan rate of 100 mV·s−1 was employed. Ferrocene was used as an internal standard to
  • calculation of reorganization energy, a def2-TZVP [47] basis set was used. Tris(1-oxo-1H-phenalen-9-olate)aluminum(III) (Al(Op)3) structure. H atoms are omitted for clarity. Cyclic voltammogram for Al(Op)3 recorded at room temperature in CH2Cl2 solution using TBAPF6 as the electrolyte and ferrocene as an
PDF
Album
Full Research Paper
Published 05 May 2015

Fulleropeptide esters as potential self-assembled antioxidants

  • Mira S. Bjelaković,
  • Tatjana J. Kop,
  • Jelena Đorđević and
  • Dragana R. Milić

Beilstein J. Nanotechnol. 2015, 6, 1065–1071, doi:10.3762/bjnano.6.107

Graphical Abstract
  • investigation of fulleropyrrolidine esters 1–12 by CV was carried out in dimethylformamide (DMF) at room temperature with tetrabutylammonium perchorate (TBAP) as the supporting electrolyte and a ferrocene/ferrocenyl couple (Fc/Fc+) as the internal redox standard. The observed half-wave reduction potentials (E1
  • . Ferrocene (Fc) and tetrabutylammonium perchlorate (TBAP) were purchased from Sigma-Aldrich and used as received. Cyclic voltammetry The electrochemical behavior of the fullerene esters was investigated using a 1 mM solution in dry DMF, containing 0.1 M TBAP as the supporting electrolyte, in a similar manner
  • to that previously described in [33]. In order to remove oxygen from the electrolyte, the system was bubbled with argon prior to each experiment and the gas remained above the liquid surface during the scans. The electrochemical measurements were carried out on a CHI760b Electrochemical Workstation
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015
Other Beilstein-Institut Open Science Activities