Search results

Search for "energy transfer" in Full Text gives 135 result(s) in Beilstein Journal of Nanotechnology.

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • synthesis of 2D and 3D hybrid perovskite phases. The energy transfer mechanisms are influenced by the length of the molecular spacer moiety, which determines the distance between the π system and the semiconductor surfaces. We find huge differences in the photoswitching behaviour between the free, surface
  • -coordinated and integrated ligands between the perovskite layers. Photoswitching of azobenzene ligands incorporated in 2D phases is nearly quenched, while the same mechanism for surface-coordinating ligands is greatly improved, compared to the free ligands. The improvement originates from an energy transfer
  • ]. In 1997, Era et al. first presented a chromophore-containing organic–inorganic perovskite [21]. They observed an enhanced phosphorescence of the included naphthalene [22], which was explained by an efficient energy transfer from Wannier excitons from the semiconducting perovskite layer to the triplet
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • explained by the smoothing effect, which is also observed at grazing incidence angles, when the cluster ion beam can effectively remove all surface irregularities [20]. Besides, at grazing incidence angles, due to a small transverse velocity the energy transfer from GCIB to the surface is reduced, which in
PDF
Album
Full Research Paper
Published 24 Feb 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • capable of quenching fluorescence through Förster resonance energy transfer. By involving an isothermal circular amplification reaction of polymerase and NEase, the group of Chen [121] used gold nanoparticles to either quench or enhance the electrochemiluminescence of CdS films through the modulation of
PDF
Album
Review
Published 31 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years
  • ]. Among them self-quenching and Förster resonance energy transfer (FRET) quenching are the most frequently used in self-assembled nanocarriers. An alternative possibility to avoid quenching is to mix the photosensitizer-conjugated polymer with a polymer without photosensitizers [82]. Interestingly, the
  • , because of the photothermal effect, the shell shrinks thus bringing the photosensitizer closer to the core allowing for fluorescence resonance energy transfer and singlet oxygen production. In other proposed polymers, fluorescence quenching is not discussed, but in vitro studies prove the higher
PDF
Album
Review
Published 15 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • tiles were separated by a helical turn, which triggered the switchable motion of the device through B-to-Z-form transition, and the relative changes in position and transformation were monitored by the fluorescence resonance energy transfer (FRET) technique. Zhao and co-workers reported the design and
PDF
Album
Review
Published 09 Jan 2020

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • nanochains of TbIII on the mica substrate are preserved [28], i.e., an efficient ligand-to-terbium energy transfer [29] is observed in the excitation spectra with a maximum of the excitation observed for the 1π→1π*/3π* absorption transitions coming from the ligand at around 339 nm in the solid state, at 343
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • ) light) and emit photons of higher energy (e.g., visible light) via a two- or multiphoton upconversion mechanism involving several energy transfer steps [2][3][4][5]. Advantages of UCNPs compared to organic dyes or other inorganic nanoscale reporters are the emission of a multitude of characteristic
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • mechanically controlled indicator displacement assay for aqueous glucose detection based on fluorescence resonance energy transfer was also reported [180]. The mechanisms of molecular recognition and sensing are roughly summarized in Figure 9. The most basic mechanism (Figure 9) is considered to form the most
PDF
Album
Review
Published 16 Oct 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • changes of the molecular machines, for instance, to capture and release guest molecules [167][168], to rotate of molecular rotors [169][170], to open and close molecular pliers [171][172], or in indicator displacement assays of glucose based on fluorescence resonance energy transfer [173]. Subtle
  • drop-casting, the long axis of oligo(p-phenylenevinylene) molecules is arranged perpendicularly to the substrate. Intra-fiber energy transfer efficiently occurs in the entangled nanofibers. Long-range excitation energy transfers are advantageous for excitation energy transfer. In contrast, the oligo(p
PDF
Album
Review
Published 30 Jul 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • surface of the UCNPs could chemically recognize the TNT molecules efficiently and form a Meisenheimer complex which has a strong absorption within the emission spectrum of the UCNPs. Due to the fluorescence resonance energy transfer from the excited UCNPs to the complex, the luminescence intensity of the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • is defined as φ = VMNPs/(VMNPs + VFF) where VMNPs is the total volume of the MNPs and VFF is the total volume of the ferrofluid. In turn, qp, which quantifies the energy transfer from the magnetic AC field to the ferrofluid (or specific tissue loaded by MNPs), is related to the specific absorption
PDF
Album
Full Research Paper
Published 24 Jun 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • combined with rare-earth dopants (Ce3+, Eu3+, Dy3+, etc.) [9][10][11][13]. Visible range emission from these phosphors, such as yellow, green or red, are in general the result of radiative energy transfer between partially filled 4f orbitals of dopant states together with the effective shielding of 5s and
PDF
Album
Full Research Paper
Published 07 Jun 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • the AuNR core, the energy transfer to the metal core seems to be low. Perhaps an additional quenching factor is due to the large surface density of the dye molecules loaded onto the composite particles. Straightforward evidence for a successful functionalization of the composite particles with R123 is
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • a resultant defect yield [3]; on the other, it can participate in defect formation in the 2D material through energy transfer from sputtered substrate atoms moving through the monolayer [1][4]. When the energy is suitable, these atoms can become embedded into the 2D material crystal lattice, leading
  • (TMDs) due to the low displacement threshold barrier [18][19]. The latter is sufficient to create a considerable amount of defects – for example, through initiating a horizontal (in-plane) recoil cascade in a two-dimensional material, which is a chain of successive events of recoil atom energy transfer
  • event with a reduced direct kinetic energy transfer [13], but in practice, it will be most effective for incident ion energy regions in which the electronic energy loss dominates (for example, MeV light ion irradiation or 101–102 MeV heavy ion irradiation in unsupported graphene or 2D TMDs). Substrate
PDF
Album
Full Research Paper
Published 22 Feb 2019

Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser

  • Imène Reghioua,
  • Mattia Fanetti,
  • Sylvain Girard,
  • Diego Di Francesca,
  • Simonpietro Agnello,
  • Layla Martin-Samos,
  • Marco Cannas,
  • Matjaz Valant,
  • Melanie Raine,
  • Marc Gaillardin,
  • Nicolas Richard,
  • Philippe Paillet,
  • Aziz Boukenter,
  • Youcef Ouerdane and
  • Antonino Alessi

Beilstein J. Nanotechnol. 2019, 10, 211–221, doi:10.3762/bjnano.10.19

Graphical Abstract
  • , induces the generation of other defects and increase of the absorption coefficient in the UV range [23][25][28]. The higher efficiency of energy transfer to the network in Ge-doped silica is also suggested by the data of [29] and by the known sensitivity of this kind of silica to UV irradiation even from
PDF
Album
Full Research Paper
Published 16 Jan 2019

Sputtering of silicon nanopowders by an argon cluster ion beam

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Zhenguo Wang,
  • Wenbin Zuo,
  • Sergey Belykh,
  • Alexander Tolstogouzov,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2019, 10, 135–143, doi:10.3762/bjnano.10.13

Graphical Abstract
  • sputtering yield with a decrease in average density, since the average distance between Si nanoparticles in less dense material is larger. This causes less effective energy transfer to the neighboring nanoparticles, i.e., increase in the energy density in the impact area. Particular mechanisms of the
PDF
Album
Full Research Paper
Published 10 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • content and crystallite size. The fluorine presence is due to the catalytic partial decomposition of the SF6 laser energy transfer agent. In direct correlation with the increase in the Zn doping level, the bandgap of co-doped nanoparticles shifts to lower energy (from 3.55 to 2.88 eV for the highest Zn
PDF
Album
Full Research Paper
Published 02 Jan 2019

Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

  • Alexander Gaul,
  • Daniel Emmrich,
  • Timo Ueltzhöffer,
  • Henning Huckfeldt,
  • Hatice Doğanay,
  • Johanna Hackl,
  • Muhammad Imtiaz Khan,
  • Daniel M. Gottlob,
  • Gregor Hartmann,
  • André Beyer,
  • Dennis Holzinger,
  • Slavomír Nemšák,
  • Claus M. Schneider,
  • Armin Gölzhäuser,
  • Günter Reiss and
  • Arno Ehresmann

Beilstein J. Nanotechnol. 2018, 9, 2968–2979, doi:10.3762/bjnano.9.276

Graphical Abstract
  • multilayers is fundamentally based on two energy-transfer mechanisms from the ions to the material system. The predominant effect, the electronic energy transfer (hyperthermal heating), causes a reorientation of the local unidirectional anisotropy. The second and considerably weaker effect is the nuclear
  • energy transfer causing defects in the atomic lattice structure [35]. These defects do not change the orientation of the local unidirectional anisotropy, but rather influence the local magnetic properties, as already explained in [35][40]. The area modified by an ion beam is defined by the beam diameter
  • entering the layer system orthogonally to the surface. The resulting penetration depth z and the lateral x/z distributions were extracted from the IONZ3D file of the program (Figure 5b). The lateral energy transfer distribution for each data set on the z-axis Θz(x) was approximated by a Gaussian normal
PDF
Album
Full Research Paper
Published 03 Dec 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
PDF
Album
Review
Published 14 Nov 2018

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • as an increase in the fraction of the hexagonal phase. The quantum efficiency of the hexagonal nanorods is about an order of magnitude higher than that of the cubic phase counterparts [17]. The photoluminescence of NaYF4:Yb3+/Er3+ is explained by energy transfer between Yb3+ and Er3+. As illustrated
  • reaction time. (c) energy transfer mechanisms for the Yb3+–Er3+ couple under 980 nm laser illumination. (a) FE-SEM images showing the multiple layers of a-Si:H solar cell; (b) current–voltage and (c) EQE curves of a-Si:H solar cell under AM1.5 solar irradiation. (d) transmittance spectrum of a-Si:H solar
PDF
Album
Full Research Paper
Published 31 Oct 2018

Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry

  • Pierre Farger,
  • Cédric Leuvrey,
  • Mathieu Gallart,
  • Pierre Gilliot,
  • Guillaume Rogez,
  • João Rocha,
  • Duarte Ananias,
  • Pierre Rabu and
  • Emilie Delahaye

Beilstein J. Nanotechnol. 2018, 9, 2775–2787, doi:10.3762/bjnano.9.259

Graphical Abstract
  • emission spectra, the broad band has a very fast time dependence totally suppressed by a time delay of only 0.05 ms. The suppression of the low-energy T1→S0 ligand emission denotes an energy transfer from the triplet excited state to the Eu3+ and Tb3+ excited levels. This energy transfer is more effective
  • )pyridine] with Sm = 1.39%·K−1 at 328 K [70] and [(Eu0.231Tb0.769(adipate)0.5(phthalate)(H2O)2] with Sm = 1.21%·K−1 at 303 K [71]. These systems are, thus, appealing for potential application as biological sensors [63][72]. The Tb3+-to-Eu3+ energy transfer plays an important role in the higher sensitivity
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2018

Disorder in H+-irradiated HOPG: effect of impinging energy and dose on Raman D-band splitting and surface topography

  • Lisandro Venosta,
  • Noelia Bajales,
  • Sergio Suárez and
  • Paula G. Bercoff

Beilstein J. Nanotechnol. 2018, 9, 2708–2717, doi:10.3762/bjnano.9.253

Graphical Abstract
  • energy transfer to recoil C atoms and optimize the defects density within this energy range. Larger energies would produce a lower amount of defects and demand a much higher dose to observe damage. Our choice of the minimum dose (LD = 1 × 1014 ions/cm2) was made to ensure a controlled quantity of
PDF
Album
Full Research Paper
Published 19 Oct 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • enhancement due to the interaction of the molecule with the evanescent electromagnetic field of the antenna and 2.) quenching of the excited state, i.e., the relaxation of the excited state by means of radiationless energy transfer to the metallic interface of the AuNP. Since the spontaneous emission rate
PDF
Album
Full Research Paper
Published 17 Aug 2018

Light extraction efficiency enhancement of flip-chip blue light-emitting diodes by anodic aluminum oxide

  • Yi-Ru Huang,
  • Yao-Ching Chiu,
  • Kuan-Chieh Huang,
  • Shao-Ying Ting,
  • Po-Jui Chiang,
  • Chih-Ming Lai,
  • Chun-Ping Jen,
  • Snow H. Tseng and
  • Hsiang-Chen Wang

Beilstein J. Nanotechnol. 2018, 9, 1602–1612, doi:10.3762/bjnano.9.152

Graphical Abstract
  • subjected to different durations of the second pore-widening process was approximately 1.6–2.9%. The efficiency enhancement may be attributed to the following mechanism: periodic nanopores on the surface of FC-BLEDs reduce the critical angle of total reflection and effective energy transfer from a light
PDF
Album
Full Research Paper
Published 30 May 2018

Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields

  • Margarita A. Kurochkina,
  • Elena A. Konshina and
  • Daria Khmelevskaia

Beilstein J. Nanotechnol. 2018, 9, 1544–1549, doi:10.3762/bjnano.9.145

Graphical Abstract
  • electric field strength can arise from the generation of excitons in LC molecules surrounding the QDs and the subsequent Förster resonance energy transfer from the LC molecules (donor) to QDs (acceptor). The NPs spectra can shift and the overlap of the wave functions of electrons and holes can decrease
PDF
Album
Full Research Paper
Published 23 May 2018
Other Beilstein-Institut Open Science Activities