Search results

Search for "energy transfer" in Full Text gives 135 result(s) in Beilstein Journal of Nanotechnology.

Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy

  • Miead Nikfarjam,
  • Enrique A. López-Guerra,
  • Santiago D. Solares and
  • Babak Eslami

Beilstein J. Nanotechnol. 2018, 9, 1116–1122, doi:10.3762/bjnano.9.103

Graphical Abstract
  • in these non-smooth curves may be ascribed to energy transfer occuring between eigenmodes [27], especially for the case of second-eigenmode AM-AFM operation using large setpoints. This led us to use lower setpoints in the experimental results (see below in Figure 3) in order to minimize this
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • excitation modes contribute strongly to the energy transfer to the substrate and thus to its physico-chemical and mechanical properties resulting in decrease of adhesion forces during a contact between two interfaces. On the contrary, longer molecules (n > 8) self-assemble in a well-packed system with higher
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
  • impact energy further channels open up and the DI cross sections for individual channels increases until the total cross section reaches a maximum in the range between 70 and 100 eV. At higher electron impact energies the energy transfer efficiency diminishes, reflected in a gradual decrease in the total
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

Wafer-scale bioactive substrate patterning by chemical lift-off lithography

  • Chong-You Chen,
  • Chang-Ming Wang,
  • Hsiang-Hua Li,
  • Hong-Hseng Chan and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2018, 9, 311–320, doi:10.3762/bjnano.9.31

Graphical Abstract
  • induced nonradiative energy transfer. Given the controllable matrix composition and the ease of CLL operation, the surface probe quantity is well-tunable to satisfy the various needs of different biological platforms. The CLL-created unique molecular environment can also be extended to fabricate
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • TNP size, the AuNPs play a crucial role. In the current study, samples made with 2.5 mg of HAuCl4·3H2O yield the best results. Higher Au concentrations possibly lead to an AuNP layer, which is too dense for efficient energy transfer between AuNPs and TNPs. On the other hand, a lower amount of HAuCl4
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Advances in nanocarbon composite materials

  • Sharali Malik,
  • Arkady V. Krasheninnikov and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2018, 9, 20–21, doi:10.3762/bjnano.9.3

Graphical Abstract
  • then expanded to the area of two-dimensional materials. This Thematic Series contains reviews and articles spanning diverse areas of research and highlights promising applications for energy transfer composites, coatings, biosensors, diagnostics, biomedicine and advanced nanocarbon materials. Many of
  • newer areas of nanocarbon materials for use in biomedicine and diagnostics. Energy transfer materials are also well represented with articles and reviews covering aspects of engineering, thermo-mechanical properties, photovoltaics and Li-ion battery materials. Last but not least, we would like to thank
PDF
Editorial
Published 03 Jan 2018

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes

  • Sascha Koch,
  • Christopher D. Kaiser,
  • Paul Penner,
  • Michael Barclay,
  • Lena Frommeyer,
  • Daniel Emmrich,
  • Patrick Stohmann,
  • Tarek Abu-Husein,
  • Andreas Terfort,
  • D. Howard Fairbrother,
  • Oddur Ingólfsson and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2017, 8, 2562–2571, doi:10.3762/bjnano.8.256

Graphical Abstract
  • hand, is a more statistical process with an onset slightly above the ionization limit of the respective molecules, and a maximum in the range between 40–100 eV, after which the cross sections slowly taper off as the energy transfer in the electron–molecule collision becomes less efficient. The bond
PDF
Album
Full Research Paper
Published 30 Nov 2017

Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

  • Nikolay Nedyalkov,
  • Mihaela Koleva,
  • Nadya Stankova,
  • Rosen Nikov,
  • Mitsuhiro Terakawa,
  • Yasutaka Nakajima,
  • Lyubomir Aleksandrov and
  • Reni Iordanova

Beilstein J. Nanotechnol. 2017, 8, 2454–2463, doi:10.3762/bjnano.8.244

Graphical Abstract
  • irradiation. This emission is evidence of nonlinear effects taking place, as the light consisted of multiple components in the visible or even the UV spectrum. Thus, when considering the process of energy transfer from the laser pulse to the glass sample, one should also take into account more complex
PDF
Album
Full Research Paper
Published 21 Nov 2017

Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

  • Ragesh Kumar T P,
  • Sangeetha Hari,
  • Krishna K Damodaran,
  • Oddur Ingólfsson and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2017, 8, 2376–2388, doi:10.3762/bjnano.8.237

Graphical Abstract
  • through effective impulsive energy transfer. Then, the decomposition of the precursor molecules would be confined within the diameter of the primary electron beam and a spatial resolution better than 1 nm would be achievable on a routine basis. However, when a high-energy electron beam impinges on a solid
PDF
Album
Full Research Paper
Published 10 Nov 2017

Changes of the absorption cross section of Si nanocrystals with temperature and distance

  • Michael Greben,
  • Petro Khoroshyy,
  • Sebastian Gutsch,
  • Daniel Hiller,
  • Margit Zacharias and
  • Jan Valenta

Beilstein J. Nanotechnol. 2017, 8, 2315–2323, doi:10.3762/bjnano.8.231

Graphical Abstract
  • of the efficiency of energy transfer between confined NC layers. An exponential decrease of the ACS with decreasing temperature down to 120 K can be explained by smaller occupation number of phonons and expansion of the band gap of Si NCs at low temperatures. This study clearly shows that the ACS of
  • (Figure 4a). On the other hand, in presence of exciton migration some neighboring NCs can work as antenna, because a NC can be excited either directly through photon absorption or indirectly through an energy transfer from a nearby NC. Therefore, an ACS enhancement is expected for the system of
  • much stronger) enhancement of ACS was reported by Priolo et al. [17] for a sample in which a substantial energy transfer was expected. An optimum inter-nanocrystal distance Recently, we showed [5] that unlike ACS the PL QY is exponentially growing with increase of separation between confined NC layers
PDF
Album
Full Research Paper
Published 06 Nov 2017

Suppression of low-energy dissociative electron attachment in Fe(CO)5 upon clustering

  • Jozef Lengyel,
  • Peter Papp,
  • Štefan Matejčík,
  • Jaroslav Kočišek,
  • Michal Fárník and
  • Juraj Fedor

Beilstein J. Nanotechnol. 2017, 8, 2200–2207, doi:10.3762/bjnano.8.219

Graphical Abstract
  • a large change (increase) in the DEA cross section, since this is extremely sensitive to the overlap of the two curves around the Franck–Condon region [11]. Finally, the target molecule can be stabilized by mechanical suppression of the dissociation (caging) and energy transfer to the environment
PDF
Album
Full Research Paper
Published 20 Oct 2017

Velocity dependence of sliding friction on a crystalline surface

  • Christian Apostoli,
  • Giovanni Giusti,
  • Jacopo Ciccoianni,
  • Gabriele Riva,
  • Rosario Capozza,
  • Rosalie Laure Woulaché,
  • Andrea Vanossi,
  • Emanuele Panizon and
  • Nicola Manini

Beilstein J. Nanotechnol. 2017, 8, 2186–2199, doi:10.3762/bjnano.8.218

Graphical Abstract
  • conservative simulations, for example, can describe the energy transfer into internal vibrational energy omitting all unphysical damping terms altogether [20][21][22][23][24][25]. The disadvantage of this approach is that, due to the finite and relatively small number of degrees of freedom available in a
  • reason we do include a weak viscous damping term, but this term acts on the elastic substrate only. We make sure that the effect of this term is negligible for the target of this research: the energy transfer from the slider to the substrate. This model virtually allows us to dispose of the arbitrary
  • one of Figure 2, which of course allows for no energy transfer, and no dissipation. As damping is decreased to the physically relevant underdamped region γ < (mK)1/2, friction stabilizes to a physically significant γ-independent value. However, when γ is further decreased below approximately 10−2 (mK
PDF
Album
Full Research Paper
Published 19 Oct 2017

Ester formation at the liquid–solid interface

  • Nguyen T. N. Ha,
  • Thiruvancheril G. Gopakumar,
  • Nguyen D. C. Yen,
  • Carola Mende,
  • Lars Smykalla,
  • Maik Schlesinger,
  • Roy Buschbeck,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Michael Mehring and
  • Michael Hietschold

Beilstein J. Nanotechnol. 2017, 8, 2139–2150, doi:10.3762/bjnano.8.213

Graphical Abstract
  • thoroughly investigated. In addition to the imaging, the tunnel tip was active in promoting the reaction by local energy transfer to and local transport of the reactants. Endothermal on-surface reactions of a whole molecular monolayer can be initiated by a corresponding heating process after deposition. STM
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2017

Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

  • Bartosz Bartosewicz,
  • Marta Michalska-Domańska,
  • Malwina Liszewska,
  • Dariusz Zasada and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2017, 8, 2083–2093, doi:10.3762/bjnano.8.208

Graphical Abstract
  • electromagnetic fields increased the efficiency of light interaction with sensitizers (dyes). On the other hand, plasmon resonance energy transfer (PRET) and “hot” electron transfer led to an increased e−/h+ pair generation and amplified number of carriers available for photocurrent generation. An increased
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

  • Jayita Patwari,
  • Samim Sardar,
  • Bo Liu,
  • Peter Lemmens and
  • Samir Kumar Pal

Beilstein J. Nanotechnol. 2017, 8, 1705–1713, doi:10.3762/bjnano.8.171

Graphical Abstract
  • absorption coefficients in the visible and NIR region of the solar spectrum and to probe the possibility of Förster resonance energy transfer (FRET) between the two dyes. FRET from the donor PPIX to acceptor SQ2 was observed from detailed investigation of the excited-state photophysics of the dye mixture
  • . Keywords: anti-aggregation; co-sensitization; dye-sensitized solar cells (DSSC); Förster resonance energy transfer (FRET); NIR harvesting; panchromatic absorption; Introduction The increasing demand for fossil-fuel energy sources and the intensifying environmental pollution have promoted an extensive
  • using a sensitizer solution cocktail mixing one dye absorbing in the visible region with another dye absorbing in the NIR region or incorporating Förster resonance energy transfer (FRET) between two co-sensitizers [9][15][16][17][18][19]. However, co-sensitization brings some additional complexity to
PDF
Album
Full Research Paper
Published 17 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • multicolour silica particles with or without Förster resonance energy transfer (FRET). These different approaches are currently under investigation. Experimental Materials All syntheses and purification steps in aqueous solution were conducted in ultrapure water (18.2 MΩ·cm, MilliQ water purification system
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • oxygen 1O2 generation has scarcely been reported for photocatalysts and may originate from the oxidation of O2•− into 1O2 and triplet oxygen 3O2 or from the energy transfer of the photo-excited catalyst to 3O2 [50][51][52][53]. 1O2 has been demonstrated to play a key role in some TiO2-catalyzed
  • are formed by the ZnO/ZCIS catalyst, we suppose that 1O2 is preferentially generated by the oxidation of O2•− by holes rather than by an energy transfer of the photo-excited catalyst to 3O2. Conclusion In summary, we have successfully prepared ZnO/ZCIS composites via a facile thermal treatment at 400
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
PDF
Album
Review
Published 24 Mar 2017

Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination

  • Paolo Visconti,
  • Patrizio Primiceri,
  • Daniele Longo,
  • Luciano Strafella,
  • Paolo Carlucci,
  • Mauro Lomascolo,
  • Arianna Cretì and
  • Giuseppe Mele

Beilstein J. Nanotechnol. 2017, 8, 134–144, doi:10.3762/bjnano.8.14

Graphical Abstract
  • process (b). Chemical reactions relative to photo-induced electron and energy transfer in MWNTs–FeCp2 nanocomposites occurring during the photo-induced ignition process. Solvent type and amount of ferrocene used in this work.
PDF
Album
Full Research Paper
Published 13 Jan 2017

Grazing-incidence optical magnetic recording with super-resolution

  • Gunther Scheunert,
  • Sidney. R. Cohen,
  • René Kullock,
  • Ryan McCarron,
  • Katya Rechev,
  • Ifat Kaplan-Ashiri,
  • Ora Bitton,
  • Paul Dawson,
  • Bert Hecht and
  • Dan Oron

Beilstein J. Nanotechnol. 2017, 8, 28–37, doi:10.3762/bjnano.8.4

Graphical Abstract
  • (~70%). The Co layer is the single greatest absorber in the stack by a factor of 2 (Figure 7, inset), which is ideal for energy transfer to the desired magnetic layer only. The inset further shows the ideal wavelength within the visible regime to be as short as possible for maximal coupling efficiency
PDF
Album
Full Research Paper
Published 04 Jan 2017

A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes

  • Mohammed Al Araimi,
  • Petro Lutsyk,
  • Anatoly Verbitsky,
  • Yuri Piryatinski,
  • Mykola Shandura and
  • Aleksey Rozhin

Beilstein J. Nanotechnol. 2016, 7, 1991–1999, doi:10.3762/bjnano.7.190

Graphical Abstract
  • we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of
  • . Keywords: dioxaborine cyanine dye; photoluminescence; resonant energy transfer; sensor; single-walled carbon nanotubes (SWNTs); Introduction Carbon nanotubes exhibit unique physical and chemical properties distinctive from other materials because of their extreme aspect ratio offering a number of exciting
  • sidewall with π-conjugated organic compounds [9][10][11][12]. Considering sensors, particular attention has to be paid to the PL enhancement in aqueous media, like the complexation and resonant energy transfer (RET) from cyanine dyes to the SWNTs covered by anionic surfactants in water [12]. However, a
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2016

Dynamic of cold-atom tips in anharmonic potentials

  • Tobias Menold,
  • Peter Federsel,
  • Carola Rogulj,
  • Hendrik Hölscher,
  • József Fortágh and
  • Andreas Günther

Beilstein J. Nanotechnol. 2016, 7, 1543–1555, doi:10.3762/bjnano.7.148

Graphical Abstract
  • -atom tip. Assuming certain symmetries, the complete phase-space distribution function can then be obtained from a time-of-flight image series. Unfortunately, absorption imaging is a fully destructive process, such that the cold-atom tip is destroyed due to energy transfer from absorbed photons. At
PDF
Album
Full Research Paper
Published 31 Oct 2016

High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

  • Bilel Chouchene,
  • Tahar Ben Chaabane,
  • Lavinia Balan,
  • Emilien Girot,
  • Kevin Mozet,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2016, 7, 1338–1349, doi:10.3762/bjnano.7.125

Graphical Abstract
  • efficiency by energy transfer processes and this topic is becoming an exciting area of research for developing electronic and optical applications like sensors, light-emitting phosphors or flat panel displays [14][15][16][17][18][19][20][21][22][23][24][25][26][27]. Due to the defects induced in the ZnO
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • optical quenching was attributed to a nonradiative energy transfer from the quantum dot to the SWCNT in the ground state [53]. In the present study, we observe an overall decrease in the PL intensity when the HfO2 nanoparticles are attached to the CNT compared to the PL emission of the free-standing
PDF
Album
Full Research Paper
Published 26 Jul 2016
Other Beilstein-Institut Open Science Activities