Search results

Search for "force" in Full Text gives 1026 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • uncrosslinked PDMS monomers (Supporting Information File 1, Figure S3C). Atomic force microscopy (AFM) scans of the samples (Figure 1F–H) show that the nanopillars and nanoholes have sub-micrometer feature sizes and a periodicity of around 1.2 µm. Due to AFM measurement artifacts, especially for lateral
  • ) Cross-sectional profile of the flat (F), nanopillar (G), and nanohole (H) PU surface from atomic force microscopy scans, showing the dimensions of the nanostructures (G, H). (Dimensions in parentheses were obtained from SEM images in Supporting Information File 1, Figure S4.) (I) Water contact angles on
  • microgroove (C), pillar–groove (D), and hole–groove (E) substrates, with corresponding high-magnification images (insets). (F–H) Cross-sectional profile of the microgroove (F), pillar–groove (G), and hole–groove (H) PU surface from atomic force microscopy scans, showing the dimensions of the structures. (I, J
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • article, we discuss examples highlighting the influence of elasticity in nanoscale biological interactions focusing on mucosal delivery and on tumor targeting. Besides this, we discuss the influence of different measurement settings using atomic force microscopy for the determination of mechanical
  • properties of drug carriers. Keywords: atomic force microscopy; drug delivery; elasticity; mechanical properties; nanomedicine; nanoparticles; stiffness measurement; tissue/body distribution; Introduction Drug delivery systems are developed with the aim to transport a given drug to the site of action
  • determine mechanical properties of nanoparticles (or their corresponding bulk materials) highlighting quartz crystal microbalance, rheology, and atomic force microscopy (AFM) are summarized by Li et al. [18]. Another often reported method is particle deformability, being extrusion a possibility for
PDF
Album
Perspective
Published 23 Nov 2023

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • work, we demonstrate the development of a multi-resistance reference sample for calibrating resistance measurements in conductive probe atomic force microscopy (C-AFM) covering the range from 100 Ω to 100 GΩ. We present a comprehensive protocol for in situ calibration of the whole measurement circuit
  • : calibration; conductive probe atomic force microscopy; measurement protocol; nanoscale; resistance reference; Introduction Since its introduction thirty years ago by Murrell et al. [1], conductive probe atomic force microscopy (C-AFM) has evolved into a unique and powerful technique for measuring local
  • -AFM measurements in scanning mode. To extract quantitative values comparable to those listed in Table 1, the surface of each electrode was individually imaged at different locations using the same operating parameters, that is, scan speed, scan orientation, applied force, and bias voltage. A histogram
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • Benjamin Grevin Fatima Husainy Dmitry Aldakov Cyril Aumaitre Univ. Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France 10.3762/bjnano.14.88 Abstract We present a new open-loop implementation of Kelvin probe force microscopy (KPFM) that provides access to the Fourier spectrum of the
  • time-periodic surface electrostatic potential generated under optical (or electrical) pumping with an atomic force microscope. The modulus and phase coefficients are probed by exploiting a double heterodyne frequency mixing effect between the mechanical oscillation of the cantilever, modulated
  • ; intermodulation; KPFM; nc-AFM; surface photovoltage; time-resolved measurements; Introduction Kelvin probe force microscopy (KPFM) is a well-known variant of AFM that allows probing at the nanoscale the electrostatic landscape on the surface of a sample by measuring the so-called contact potential difference
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • In this work, a silicon photodiode integrated with a piezoelectric membrane is studied by Kelvin probe force microscopy (KPFM) under modulated illumination. Time-dependent KPFM enables simultaneous quantification of the surface photovoltage generated by the photodiode as well as the resulting
  • mechanical oscillation of the piezoelectric membrane with vertical atomic resolution in real-time. This technique offers the opportunity to measure concurrently the optoelectronic and mechanical response of the device at the nanoscale. Furthermore, time-dependent atomic force microscopy (AFM) was employed to
  • spatially map voltage-induced oscillation of various sizes of piezoelectric membranes without the photodiode to investigate their position- and size-dependent displacement. Keywords: Kelvin probe force microscopy (KPFM); light-driven micro/nano systems; piezoelectric membrane; surface photovoltage (SPV
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • investigated the processing and properties of high-performance terpolymer fibers, much remains to be understood about the internal nano- and microstructures of these fibers, and how these morphologies relate to fiber properties. Here we use a focused ion beam notch technique and multifrequency atomic force
  • Kevlar® K29 fibers, we find remarkable differences between the internal structures of the two fibers, and posit connections between our measurements and multifunctional performance studies from the literature. Keywords: atomic force microscopy; correlative characterization; high-performance fibers
  • ® and UHMWPE [9][10][11][12][13]. Here we extend this technique to Technora® by notching individual fibers (Figure 1b), gently opening them along shear planes to expose internal surfaces, and then scanning across those surfaces using an atomic force microscope (AFM) (Figure 1c). AFM scans yield internal
PDF
Album
Full Research Paper
Published 05 Oct 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • investigations under 10 bar and 298 K. At pressures higher than 10 bar, computational and experimental results were significantly different because of the unsuitable force field under high pressure conditions. Recently, Stanton et al. also used the GCMC technique to predict the CO2 adsorption of various MOF
PDF
Album
Review
Published 20 Sep 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • CoAl-based LDH synthesis through an ARR method had been demonstrated, morphological aspects were addressed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) (Figure 4 and Figure 5). For reference x1, well-defined hexagonal single
  • microscope at an accelerating voltage of 20 kV. Atomic force microscopy (AFM) AFM was carried out with a Bruker Dimension Icon microscope in scan-assist-mode. A Bruker Scanasyst-Air silicon tip with a diameter of around 10 nm was used to obtain images with a resolution of 512 × 512 or 1024 × 1024 pixels. The
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • able to generate surface geometries that corresponded to the boundary conditions of their model, the peel-off force is lower over the structured surface than over a polished one. Their understanding of the relationship between the surface structure and the peel-off force will now make it possible to
PDF
Album
Editorial
Published 03 Aug 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • . Our aim is to determine the optimal conditions to reduce damage formation near the surface while also retaining a high degree of contaminant removal. All bombardments have been simulated using a reactive force field (ReaxFF) [27][28][29] and the molecular dynamics (MD) code LAMMPS [30][31]. While low
  • amorphization. We will also show that favorable angles to minimize the implantation of the species of the contamination layer are in the range of 60° to 75°. Computational Methods Force fields The force fields used to simulate the Ar bombardment of a contaminated silicon sample have already been described in a
  • previous article [26]. To summarize, they are composed of a set of two interatomic potentials. One is the reactive force field (ReaxFF) [29] designed to compute the bonds between silicon, oxygen, and hydrogen atoms, as well as to compute the distribution of partial charges to model the formation and
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • from 65 to 85 dB, the force exerted on the surface of the piezoelectric film also increases. This leads to a corresponding increase in the peak voltage within the film, which rises from 1.76 to 3.29 V. Additionally, the stress distribution within the film exhibits an upward trend, rising from 21.9 to
PDF
Album
Full Research Paper
Published 31 Jul 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • catalyst’s surface. Carbon atoms are adsorbed by the catalyst and deposited by diffusion to form nanotubes through continuous stacking. The weak interaction force between the catalyst particle and the substrate lifts the particles as the nanotubes grow, forming CNTs with catalyst particles at the tip. CNTs
  • are formed with catalyst particles at the bottom if the catalyst–substrate interaction force is more substantial [23]. Nevertheless, the rapid growth of CNTs was observed from the catalytic reaction within the flame environment. Because of the coupled energy and mass transfer phenomena, the
PDF
Album
Full Research Paper
Published 21 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • consisting of many layers and interfaces. The study and the comprehension of the mechanisms that take place at the interfaces is crucial for efficiency improvement. In this work, we apply frequency-modulated Kelvin probe force microscopy under ambient conditions to investigate the capability of this
  • photogenerated carrier distributions. The analysis of the KPFM data was assisted by means of theoretical modelling simulating the energy bands profile and KPFM measurements. Keywords: FM-KPFM; frequency-modulated Kelvin probe force microscopy; III–V multilayer stack; Kelvin probe modelling; KP modelling; SPV
  • measurements based on scanning probe microscopy (SPM) allow for the analysis of two-dimensional (2D) features at the surface and along a physical cross section of nanoscale semiconductor structures. Among the wide variety of SPM techniques available [3], Kelvin probe force microscopy (KPFM) is an application
PDF
Album
Full Research Paper
Published 14 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • hydrothermal process with glucose as a precursor undergoing carbonization. Different spectroscopic techniques were used to analyze the optical characteristics of GQDs, including UV–visible, photoluminescence, FTIR, and Raman spectroscopy. Atomic force microscopy, transmission electron microscopy, and X-ray
  • obtained from a Bruker AFM analyzer atomic force microscope and a FEI Tecnai G2 20 S-TWIN transmission electron microscope. Electrochemical measurements GQDs/GCE, Ag/AgCl, and a platinum wire were used as working, reference, and counter electrode, respectively, in all electrochemical experiments, conducted
PDF
Album
Full Research Paper
Published 09 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • electron microscopy (SEM, Hitachi S4800) and atomic force microscopy (AFM, Asylum Research MFP-3D). Electrochemical impedance measurements were performed under various atmospheric conditions in a custom-made system described elsewhere [28]. The main system parameters were RH from 4% to 97%, gas flow from
  • . Atomic force microscopy: (g) a bundle of CuO nanowires between microelectrodes and (h) a height profile scan across the bundle. Impedance spectra measured for the system of CuO nanowire networks on microelectrodes at fixed T (30 °C) and various RH (5%, 20%, 50%, 73%, and 95%). Dotted lines connect
PDF
Album
Full Research Paper
Published 05 Jun 2023

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • object it encounters, and the resulting optical force can be used to manipulate particles at the micro- or nanoscale. In this work, we present a detailed comparison through numerical simulations of the optical forces that can be exerted on polystyrene spheres of the same diameter. The spheres are placed
  • supported, which are verified by the multipole decomposition analysis of the scattering power spectrum. Our numerical results show that the quasi-BIC resonance can produce a larger optical gradient force, which is about three orders of magnitude higher than those generated from the other two resonances. The
  • manipulation of nanoparticles by optical forces. It is important to use low-power lasers to achieve efficient trapping and avoid any harmful heating effects. Keywords: all-dielectric nanostructures; anapole; optical force; quasi-bound states in the continuum; toroidal dipole; Introduction Optical forces have
PDF
Album
Full Research Paper
Published 02 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • -resolution CLSM imaging or atomic force microscopy. As it was visualized by CLSM [55][56][57], the basal parts of some short and long setae appear to be relatively soft and seem to contain resilin or other proteins. This should influence the mobility of the rotating setae. To account for this in the
  • [62] for the formula): where is a position vector of the middle of the segment (the node) j; k = j ± 1. The longitudinal force, is described here by a double-well potential, which tends to keep the distance between the nodes and close to the equilibrium length of each segment dR. This particular
  • form of the longitudinal force equation was chosen, because it is linear at small displacement and increases non-linearly at large displacement. The transverse force, , is directly proportional to the lateral deflection and tends to keep the position close to the mean value between its nearest
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • of system design on nanoscale transport is particularly intriguing and has lead to the investigation of unique structures [10][11] in an attempt to better understand and develop manufactured devices. The introduction of additional surfaces and the reduction of direct paths through a system can force
PDF
Album
Full Research Paper
Published 15 May 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • –Weber, EDIP, ReaxFF, COMB, and machine-learning-based interatomic potentials. A quantitative systematic comparison and a discussion of the results obtained are reported. Keywords: 2D materials; DFT; force fields; interatomic potentials; mechanical properties; silicene; Introduction We are living in
  • -dependent interatomic potential (EDIP) fitted to various bulk phases and defect structures of Si ReaxFF [41]: the reactive force-field (ReaxFF) fitted to a training set of DFT data that pertain to Si/Ge/H bonding environments COMB [42]: the charge optimized many-body (COMB) potential fitted to a pure
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • substrates fabricated using both methods, we attempted to prepare substrates with a comparable amount of deposited Ag, which was examined and controlled using atomic force microscopy (AFM). For this purpose, additional Ag layers were deposited on flat Si substrates. Based on the measured thickness of the Ag
  • atomic force microscope (AFM) (NT-MDT, Moscow, Russia) in non-contact mode using the approach described previously [37]. The silver layers were removed randomly on the sample to form a sharp edge for measurement of height (layer thickness). AFM measurements were carried out in three different areas on
PDF
Album
Full Research Paper
Published 03 May 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • length of 5 μm were produced at CTNano/UFMG [59][60][61]. Morphological analysis was carried out by scanning electron microscopy (SEM) in a Quanta 200 FEG, using secondary electrons between 2 and 10 kV. Atomic force microscopy (AFM) was carried out on a Bruker MultiMode8 SPM using the intermittent
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • widely used characterization tool for GR2Ms [8]. A search of Web of Science showed that of 97,532 articles published in the last five years with “Graphene” in the abstract, 9.3% also mentioned “Raman”. This is compared with atomic force microscopy (AFM) (2.4%), scanning electron microscopy (SEM) (11.4
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • oligomeric chains were significantly elongated. High-resolution scanning tunneling microscope (STM) topography shows alternating bright twin spots, which correspond to phenylene and tetrafluorophenylene, respectively. A high-resolution atomic force microscope (AFM) image of an entirely elongated fine
PDF
Album
Review
Published 03 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • electrons being in proximity to the surface) result in an increased Coulombic force of restoration and hence a shift in the dielectric function [47]. Similarly, with a decrease in grain size, due to the fact that there is an increase in the volume fraction of grain boundaries compared to the grains, and
PDF
Album
Review
Published 27 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • induction depends on the density of NPs, where the effective density of Si NPs ranged from 1.57 to 1.72 g/cm3 [20]. The leakage rate increases with increasing nanoparticle density. They also showed that a force of approximately 1.8 nN/μm along the boundaries of VE-cad adherens junctions mediated by
  • cumulative gravity appeared to be the critical threshold force required to disrupt endothelial cells. The leakiness of the endothelium resulting from the action of NPs occurs relatively quickly, usually within an hour after exposing the cells to NPs [20][21][23]. In addition to understanding the key
  • increasing tensile force, which favored the spread of the crack throughout the VE-cad domain. Lee et al. also suggested that NanoEL is reversible and kinetic, and that a removal of leakiness stimuli triggers the reconstruction of the cadherin bond between adjacent cells. Therefore, NanoEL is a phenomenon
PDF
Album
Review
Published 08 Mar 2023
Other Beilstein-Institut Open Science Activities