Search results

Search for "heterostructures" in Full Text gives 116 result(s) in Beilstein Journal of Nanotechnology.

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • photocatalysts which showed higher activity than single-phase BiOI or TiO2 and 50% BiOI possessed the best performance [32]. Jiang and co-workers used a chemical bath to produce ZnO/BiOI heterostructures. By tuning the ratio of Zn/Bi, they could rationally control the morphology, constituents and optical
  • . described the synthesis of p–n heterostructures where p-type BiOI nanoplates decorated on n-type ZnO nanorod arrays which were synthesized through a solvothermal route. The high-contact areas provided by the fast charge transfer channel of BiOI and ZnO create the efficient photocatalyst [35]. Tong et al
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Combined pulsed laser deposition and non-contact atomic force microscopy system for studies of insulator metal oxide thin films

  • Daiki Katsube,
  • Hayato Yamashita,
  • Satoshi Abo and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2018, 9, 686–692, doi:10.3762/bjnano.9.63

Graphical Abstract
  • grown on substrate materials have been studied for correlated electron heterostructures and devices. One of the most important and common uses of epitaxial LaAlO3 is its interface with SrTiO3 for studies of electrical conductivity [4], superconductivity [59], photoconductivity [60], and
PDF
Album
Full Research Paper
Published 21 Feb 2018

Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry

  • Rumen G. Nikov,
  • Anna Og. Dikovska,
  • Nikolay N. Nedyalkov,
  • Georgi V. Avdeev and
  • Petar A. Atanasov

Beilstein J. Nanotechnol. 2017, 8, 2438–2445, doi:10.3762/bjnano.8.242

Graphical Abstract
  • deposition conditions [11][12][13]. The possibility to control the morphological and structural characteristics of the ultimate structure by precisely manipulating the experimental parameters makes PLD one of the most promising techniques for formation of complex oxide heterostructures and nanostructures [14
PDF
Album
Full Research Paper
Published 17 Nov 2017

Optical contrast and refractive index of natural van der Waals heterostructure nanosheets of franckeite

  • Patricia Gant,
  • Foad Ghasemi,
  • David Maeso,
  • Carmen Munuera,
  • Elena López-Elvira,
  • Riccardo Frisenda,
  • David Pérez De Lara,
  • Gabino Rubio-Bollinger,
  • Mar Garcia-Hernandez and
  • Andres Castellanos-Gomez

Beilstein J. Nanotechnol. 2017, 8, 2357–2362, doi:10.3762/bjnano.8.235

Graphical Abstract
  • is one of the few known examples of a naturally occurring van der Waals heterostructure (another example of these materials is the cylindrite [19], see Supporting Information File 1). Unlike most of the studied heterostructures (that are manually assembled layer-by-layer) franckeite, in its natural
  • form, presents alternating SnS2-like and PbS-like layers stacked on top of each other (Figure 1), overcoming the major drawbacks of synthetic van der Waals heterostructures: the difficulty to align the crystal lattices of the different materials with atomic accuracy and the presence of ambient
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • the nanosheets, the emission intensity evidently decreased, which indicates that the photogenerated charge carriers are efficiently separated and the lifetime of free carriers is expected to be prolonged. In addition, heterostructures act as an excellent electron transport platform to facilitate the
PDF
Album
Full Research Paper
Published 30 Oct 2017

In situ controlled rapid growth of novel high activity TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites

  • Jilin Wang,
  • Hejie Liao,
  • Yuchun Ji,
  • Fei Long,
  • Yunle Gu,
  • Zhengguang Zou,
  • Weimin Wang and
  • Zhengyi Fu

Beilstein J. Nanotechnol. 2017, 8, 2116–2125, doi:10.3762/bjnano.8.211

Graphical Abstract
  • the proposed growth mechanism of the TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites were further discussed. Keywords: chemical activity; hierarchical/heterostructures; self-propagating high-temperature synthesis; TiB2; TiN; Introduction Refractory materials such as borides, nitrides
  • %, the novel hierarchical/heterostructures emerged, which were composed of hexagonal prism grains and short rods (Figure 3g,h). Additionally, the grains that originally existed at the center of the hierarchical structures eventually disappeared completely and transformed into scattering multibranched
  • meaningful success [26][27]. However, the corresponding deeper research regarding the growth mechanism of the desired inorganic materials with hierarchical and/or heterostructures has been rarely reported. In this work, first, high quality TiB2 hexagonal prism crystals were prepared according to the above
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2017

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc) and a flourinated copper phthalocyanine–manganese
  • combined with the strong acceptor molecule F4TCNQ. In general all of the fabricated heterostructures revealed new low-energy optical excitations originating from hybrid states. These states are of special importance for the transport characteristics of the hybrid materials. In contrast to other organic
  • molecule but also between neighboring molecules in a film [15], where they can lead to ordering phenomena. Our paper is organised as follows. First we will present the methodical background and results of our theoretical investigations on different phthalocyanine heterostructures by using the DFT-NEGF
PDF
Album
Full Research Paper
Published 06 Oct 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017

Modeling of the growth of GaAs–AlGaAs core–shell nanowires

  • Qian Zhang,
  • Peter W. Voorhees and
  • Stephen H. Davis

Beilstein J. Nanotechnol. 2017, 8, 506–513, doi:10.3762/bjnano.8.54

Graphical Abstract
  • along certain crystallographic directions and quantum dots near the apexes of the shell are observed in AlGaAs shells. Controlling the formation of these core–shell heterostructures remains challenging. A two-dimensional model valid on the wire cross section, that accounts for capillarity in the faceted
  • surface limit and deposition has been developed for the evolution of the shell morphology and concentration in AlxGa1−xAs alloys. The model includes a completely faceted shell–vapor interface. The objective is to understand the mechanisms of the formation of the radial heterostructures (Al-rich stripes
  • the attachment rate of Al atoms is smaller there. Keywords: core–shell nanowires; heterostructures; mechanisms; quantum dots; Findings Core–shell nanowires with heterostructures hold great promise in photonic and electronic applications because of their high sensitivity to electronic and magnetic
PDF
Album
Letter
Published 24 Feb 2017

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

  • Aurora Piazza,
  • Filippo Giannazzo,
  • Gianpiero Buscarino,
  • Gabriele Fisichella,
  • Antonino La Magna,
  • Fabrizio Roccaforte,
  • Marco Cannas,
  • Franco Mario Gelardi and
  • Simonpietro Agnello

Beilstein J. Nanotechnol. 2017, 8, 418–424, doi:10.3762/bjnano.8.44

Graphical Abstract
  • ]. Especially the possibility to produce van der Waals heterostructures combining Gr and MoS2, is pushing the study of this subject [1]. Indeed, the non-zero band gap, good chemical sensitivity and photo response of MoS2 pave the way for its application in optoelectronics, sensing and photovoltaic devices [22
  • ][23][24]. In this context, the possibility to tune the properties of MoS2 and to evaluate the thermal effects in the case of heterostructures are of interest [25][26]. As recently shown, the possibility to obtain doping by treatment in controlled atmosphere, accurately studied through Raman
PDF
Album
Full Research Paper
Published 10 Feb 2017

Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

  • Filippo Giannazzo,
  • Gabriele Fisichella,
  • Aurora Piazza,
  • Salvatore Di Franco,
  • Giuseppe Greco,
  • Simonpietro Agnello and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2017, 8, 254–263, doi:10.3762/bjnano.8.28

Graphical Abstract
  • . Fiorenza, I. Deretzis, A. La Magna, C. Bongiorno and G. Nicotra from CNR-IMM are acknowledged for helpful discussions. This work has been supported, in part, by MIUR in the framework of the FlagERA project “GraNitE: Graphene heterostructures with Nitrides for high frequency Electronics” (Grant number
PDF
Album
Full Research Paper
Published 25 Jan 2017

Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

  • Barbara Lyson-Sypien,
  • Anna Kusior,
  • Mieczylaw Rekas,
  • Jan Zukrowski,
  • Marta Gajewska,
  • Katarzyna Michalow-Mauke,
  • Thomas Graule,
  • Marta Radecka and
  • Katarzyna Zakrzewska

Beilstein J. Nanotechnol. 2017, 8, 108–122, doi:10.3762/bjnano.8.12

Graphical Abstract
  • the range of 3–27 nm. Tin exhibits only the oxidation state 4+. The H2 detection threshold for the studied TiO2/SnO2 heterostructures is lower than 1 ppm especially in the case of SnO2-rich samples. The recovery time of SnO2-based heterostructures, despite their large responses over the whole
  • measuring range, is much longer than that of TiO2-rich samples at higher H2 flows. TiO2/SnO2 heterostructures can be intentionally modified for the improved H2 detection within both the small (1–50 ppm) and the large (50–3000 ppm) concentration range. The temperature Tmax at which the semiconducting
  • TixSn1−xO2 where 0 ≤ x ≤1 C. partially decomposed TixSn1−xO2–SnyTi1−yO2 where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 D. decorated nano-heterostructures denoted as TiO2@SnO2, e.g., TiO2 nanoflowers overcoated with SnO2 nanoparticles Synergetic effects and catalytic reactions can be expected in the case of A) and C
PDF
Album
Full Research Paper
Published 12 Jan 2017

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • layers at room temperature and after elevated temperature thermal processing. The molecular homo- and heterostructures were characterized by high-resolution scanning tunneling microscopy (STM) at room temperature and their geometrical arrangement and degree of ordering are compared with the previously
  • studied copper phthalocyanine (CuPc) and ZnTPP heterostructures. It was found that the central metal atom may play some role in ordering and growth of phthalocyanine/ZnTPP heterostructures, causing differences in stability of upright standing ZnPc versus CuPc molecular chains at given thermal annealing
  • conditions. Keywords: dye-sensitized solar cells; molecular nanostructures; phthalocyanines; porphyrins; rutile surfaces; STM imaging; Introduction There is an increasing interest in optoelectronic applications of organic molecular heterostructures which utilize inorganic substrates, such as titanium
PDF
Album
Full Research Paper
Published 11 Jan 2017

Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering

  • Sergei N. Chebotarev,
  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Elena N. Zhivotova,
  • Georgy A. Erimeev and
  • Marina L. Lunina

Beilstein J. Nanotechnol. 2017, 8, 12–20, doi:10.3762/bjnano.8.2

Graphical Abstract
  • semiconducting [1], magnetic [2] and superconducting [3] nanomaterials. Among them, InAs/GaAs nanostructured materials have a considerable application potential in lasers [4], photonic devices [5], photoelectric converters based on multilayer heterostructures [6] and intermediate band devices [7]. Molecular beam
  • crystallization of quantum-dimensional Ge/Si [21] and InAs/GaAs [22][23] heterostructures by ion-beam sputtering. The features of ion beam crystallization of silicon films [24] were partially investigated. Also, the morphology of Ge-QD/Si nanostructures [25] and photoluminescence of InAs-QD/GaAs nanostructures
  • the crystallization depending on temperature, energy and beam current was not performed. Neither did we focus on doping processes in our earlier articles. The aim of the present study is to generalize features of crystallization and doping of InAs-QD/GaAs(001) quantum-dot nano-heterostructures grown
PDF
Album
Full Research Paper
Published 03 Jan 2017

Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications

  • Marwa Akkari,
  • Pilar Aranda,
  • Abdessalem Ben Haj Amara and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1971–1982, doi:10.3762/bjnano.7.188

Graphical Abstract
  • Bizerte, University of Carthage, 7021 Zarzouna, Tunisia 10.3762/bjnano.7.188 Abstract In this study, ZnO/SiO2-clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the
  • first step, intermediate silica–organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under
  • ultrasound irradiation to the silica–organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay–SiO2 framework. In the case of montmorillonite the
PDF
Album
Full Research Paper
Published 12 Dec 2016

High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

  • Bilel Chouchene,
  • Tahar Ben Chaabane,
  • Lavinia Balan,
  • Emilien Girot,
  • Kevin Mozet,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2016, 7, 1338–1349, doi:10.3762/bjnano.7.125

Graphical Abstract
  • of small ellipsoidal CeO2 particles with an average diameter of ca. 5 nm deposited at the surface of the rods (Figure 6b), forming CeO2/ZnO:Ce heterostructures. The analysis of the interplanar distance calculated from the HRTEM image shows the (111) plane of cubic ceria. The BET surface area of pure
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures

  • Daniel Lenk,
  • Vladimir I. Zdravkov,
  • Jan-Michael Kehrle,
  • Günter Obermeier,
  • Aladin Ullrich,
  • Roman Morari,
  • Hans-Albrecht Krug von Nidda,
  • Claus Müller,
  • Mikhail Yu. Kupriyanov,
  • Anatolie S. Sidorenko,
  • Siegfried Horn,
  • Rafael G. Deminov,
  • Lenar R. Tagirov and
  • Reinhard Tidecks

Beilstein J. Nanotechnol. 2016, 7, 957–969, doi:10.3762/bjnano.7.88

Graphical Abstract
  • , Moscow State University, Leninskie gory, GSP-1, Moscow 119992, Russia 10.3762/bjnano.7.88 Abstract Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear
  • smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1. Keywords: heterostructures; superconducting spin valve; thin films; triplet superconductivity; Introduction Fulde and Ferrell [1], and Larkin and Ovchinnikov [2] (FFLO) predicted superconductivity on a ferromagnetic background, i.e., in
  • ]. The generation of spin-triplet Cooper pairs in S/F-heterostructures is expected to be the key to merge superconductivity and spintronics, because spin currents can be realized by supercurrents flowing through ferromagnetic materials, thus minimizing heating effects in spintronic devices [59]. Recently
PDF
Album
Full Research Paper
Published 04 Jul 2016

Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations

  • Alberto Nocera,
  • Carmine Antonio Perroni,
  • Vincenzo Marigliano Ramaglia and
  • Vittorio Cataudella

Beilstein J. Nanotechnol. 2016, 7, 439–464, doi:10.3762/bjnano.7.39

Graphical Abstract
PDF
Album
Review
Published 18 Mar 2016

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • -Benzenedimethanethiol adsorption on copper surfaces Dithiol SAMs have attracted attention in particular because the two thiol ends can be used as linkers between metal electrodes and thus metal–organic heterostructures can be constructed [70][71][72][73][74]. 1,4-Benzenedimethanethiol (BDMT) has been the object of
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method

  • Mikalai V. Malashchonak,
  • Alexander V. Mazanik,
  • Olga V. Korolik,
  • Еugene А. Streltsov and
  • Anatoly I. Kulak

Beilstein J. Nanotechnol. 2015, 6, 2252–2262, doi:10.3762/bjnano.6.231

Graphical Abstract
  • optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the
  • occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (EU), spectral width of the CdS longitudinal optical (LO) phonon band and the relative
  • . Photoelectrochemical study of ZnO/CdS, TiO2/CdS, and In2O3/CdS heterostructures The incident photon-to-current conversion efficiency (IPCE) spectra of the heterostructures are presented in Figure 2. The conduction band level of CdS is located relatively higher than that of the WBGO. Therefore, the photocurrent
PDF
Album
Full Research Paper
Published 30 Nov 2015

Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires

  • Suvankar Das,
  • Amitava Moitra,
  • Mishreyee Bhattacharya and
  • Amlan Dutta

Beilstein J. Nanotechnol. 2015, 6, 1970–1977, doi:10.3762/bjnano.6.201

Graphical Abstract
  • obtain the elastic constants and coefficients of thermal expansion (CTE) of these semiconductor heterostructures. The coupling of these two parameters yields a reasonable estimate of the magnitude of thermal stress endured by the system. Once the thermal stress is obtained, it is compared to the critical
PDF
Album
Full Research Paper
Published 02 Oct 2015

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • nanowires [7]. In the article by Oleksandr Dobrovolskiy and colleagues [8], different postgrowth purification treatments for platinum and cobalt FEBID structures are employed to fine-tune the magnetic properties of heterostructures. A novel application of electron beam-induced deposition of amorphous carbon
PDF
Editorial
Published 09 Sep 2015

A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

  • Houcine Labiadh,
  • Tahar Ben Chaabane,
  • Romain Sibille,
  • Lavinia Balan and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2015, 6, 1743–1751, doi:10.3762/bjnano.6.178

Graphical Abstract
  • heterostructures were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), UV–vis spectroscopy and photoluminescence (PL) spectroscopy. The PL spectra of Mn:ZnS/ZnS/Fe3O4 quantum dots (QDs) showed marked visible emission around 584 nm related to the 4T1
PDF
Album
Full Research Paper
Published 17 Aug 2015

Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

  • Ina Schubert,
  • Loic Burr,
  • Christina Trautmann and
  • Maria Eugenia Toimil-Molares

Beilstein J. Nanotechnol. 2015, 6, 1272–1280, doi:10.3762/bjnano.6.131

Graphical Abstract
  • currently being intensively investigated. It has become evident that the combination of several materials in one nanostructure gives rise to specific functionalities that are not exhibited by the individual single components [1][2][3][4]. Different types of heterostructures such as core–shell, axially
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2015

Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures

  • Oleksandr V. Dobrovolskiy,
  • Maksym Kompaniiets,
  • Roland Sachser,
  • Fabrizio Porrati,
  • Christian Gspan,
  • Harald Plank and
  • Michael Huth

Beilstein J. Nanotechnol. 2015, 6, 1082–1090, doi:10.3762/bjnano.6.109

Graphical Abstract
  • various applications such as magnetic recording, imaging and sensing. This has been accomplished to a very high degree by means of layered heterostructures in the vertical dimension. Here we present a complementary approach that allows for a controlled tuning of the magnetic properties of Co/Pt
  • heterostructures on the lateral mesoscale. By means of in situ post-processing of Pt- and Co-based nano-stripes prepared by focused electron beam induced deposition (FEBID) we are able to locally tune their coercive field and remanent magnetization. Whereas single Co-FEBID nano-stripes show no hysteresis, we find
  • induced deposition; heterostructures; in situ processing; platinum; Introduction Controlling magneto-transport properties on the nanometer-scale is essential for basic research in micro-magnetism [1] and spin-dependent transport [2] as well as for various applications, such as magnetic domain-wall logic
PDF
Album
Full Research Paper
Published 29 Apr 2015
Other Beilstein-Institut Open Science Activities