Search results

Search for "hyperthermia" in Full Text gives 69 result(s) in Beilstein Journal of Nanotechnology.

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • ]. This was possible thanks to the co-encapsulated cypate [36] or IR780 [106], which could induce hyperthermia through NIR irradiation. In [36], a 9,10-diphenylanthracene derivative is loaded while in [106] it is covalently linked to the methacrylate backbone together with the photosensitizer. It might
PDF
Album
Review
Published 15 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • is simultaneously employed as a contrast agent in magnetic resonance imaging (MRI) and for local heating therapy using magnetic particle hyperthermia [33]. In vitro hyperthermia tests showed efficiency in inoculating mouse breast cancer cells. Another study reports the use of alendronate-coated gold
PDF
Editorial
Published 20 Dec 2019

Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields

  • Nikolai A. Usov,
  • Ruslan A. Rytov and
  • Vasiliy A. Bautin

Beilstein J. Nanotechnol. 2019, 10, 2294–2303, doi:10.3762/bjnano.10.221

Graphical Abstract
  • SAR values of the order of 400–500 W/g can be obtained in a rotating magnetic field with a frequency f = 400 kHz and a moderate magnetic field amplitude H0 = 100 Oe. Keywords: magnetic hyperthermia; magnetic nanoparticles; numerical simulation; rotating magnetic field; specific absorption rate
  • ; viscous liquid; Introduction Magnetic nanoparticles are promising materials in various areas of biomedicine [1][2][3][4], such as magnetic resonance imaging [5][6][7], targeted drug delivery [8][9][10], and magnetic hyperthermia [11][12][13][14][15][16][17][18][19][20]. Iron oxide nanoparticles are most
  • frequently used in biomedicine due to their biocompatibility, biodegradability and relatively high saturation magnetization. In magnetic hyperthermia [2][3][11][12][13][14][15][16][17][18][19][20] magnetic nanoparticles are directly introduced into a tumor and are exposed to an alternating magnetic field
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • whose features are used in many technologies, from magnetic information storage to ferrofluids or nanoscale drug-delivery systems and magneto-assisted hyperthermia cancer treatments [65]. Single SPION detection with 10 nm accuracy was shown by bulk diamond NV center magnetometry combining spin
PDF
Album
Review
Published 04 Nov 2019

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  • Da Shi,
  • Justine Wallyn,
  • Dinh-Vu Nguyen,
  • Francis Perton,
  • Delphine Felder-Flesch,
  • Sylvie Bégin-Colin,
  • Mounir Maaloum and
  • Marie Pierre Krafft

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Graphical Abstract
  • have been investigated for hyperthermia and magnetic resonance imaging owing to their increased stability in aqueous media and biocompatibility [27][28]. An even stronger anchoring agent consisting of a dendron structure bearing a bisphosphonate polar head provided increased colloidal stability in
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • genomic and proteomic analysis [5], for drug delivery [6], as magnetic resonance imaging (MRI) contrast agents [7], and for magnetic hyperthermia [8]. This wide variety of applications is due to the unique combination of magnetic, optical and chemical properties that are characteristic of MNPs. However
PDF
Album
Full Research Paper
Published 02 Oct 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • doping on structure, morphology and magnetic properties of CoxFe3−xO4 samples was investigated. In particular, we examined the interparticle interactions in the samples by δm graphs and Henkel plots that have not been reported before in literature. Finally, we studied the hyperthermia properties and
  • observed that the heat efficiency of soft Fe3O4 is about 4 times larger than that of hard CoFe2O4 ferrite, which was attributed to the high coercive field of samples compared with the external field amplitude. Keywords: anisotropy; cobalt; ferrite; Henkel plots; hyperthermia therapy; nanoparticles
  • ) and especially magnetic hyperthermia therapy, which is one of the efficient and new approaches for cancer treatment [4][15]. When magnetic NPs concentrated in tumor tissue are exposed to an ac magnetic field, the electromagnetic energy is converted into thermal energy, and the generated heat is used
PDF
Album
Full Research Paper
Published 03 Jul 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • superparamagnetic regime in the presence of interparticle dipolar interactions is considered. The direct implications of such interactions for magnetic fluid hyperthermia therapy through susceptibility loss mechanisms give rise to an indirect method for their study via specific absorption rate measurements
  • static and time-dependent micromagnetic simulations. Keywords: magnetic hyperthermia; magnetic nanoparticles; magnetic relaxation time; micromagnetic simulation; Introduction Magnetic relaxation phenomena in nanoparticulate systems are under intensive investigation today, especially due to their
  • nanoparticulate contrasting agents on proton relaxivity [7][8][9]) and cancer therapy (through magnetic fluid hyperthermia therapy [10][11]). The efficiency of the magnetic nanoparticles (MNPs) in a colloidal system to convert the energy of AC magnetic fields into temperature increments is of high importance for
PDF
Album
Full Research Paper
Published 24 Jun 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • , targeting tumor sites using an external magnetic field, MRI contrast agents, or magnetic hyperthermia. Under physiological conditions, the nanoparticle surface is exposed to the action of biomolecules, oxygen, peroxides, and radicals, which changes particle properties and behavior. Moreover, Fe2+ ions can
PDF
Album
Full Research Paper
Published 20 May 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • of potential applications, e.g., from catalysis [5] and microwaves applications [6] to biomedicine, such as MRI [7], hyperthermia [8], and drug delivery [7][9] applications. Nanometer-sized magnetic materials exhibit different properties compared their bulk counterparts [10][11]. Below a critical
  • different magnetic anisotropy opens interesting perspectives for applications in biomedical fields (e.g., MRI, drug delivery, hyperthermia) [20][21] and energy harvesting. Experimental Synthesis Several samples consisting of manganese ferrite nanoparticles with different cobalt doping, i.e., Mn1−xCoxFe2O4
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • NIR CW irradiation corresponded to a typical hyperthermia of cells [51][52]. To investigate the role of folate targeting in photothermal cancer therapy, folate-positive HeLa cells were incubated with AuNR-PDA-R123-folate or AuNR-PDA-R123-PEG nanocomposites of different concentrations. After incubation
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Heating ability of magnetic nanoparticles with cubic and combined anisotropy

  • Nikolai A. Usov,
  • Mikhail S. Nesmeyanov,
  • Elizaveta M. Gubanova and
  • Natalia B. Epshtein

Beilstein J. Nanotechnol. 2019, 10, 305–314, doi:10.3762/bjnano.10.29

Graphical Abstract
  • ; Introduction Magnetic hyperthermia [1][2][3] is a promising therapeutic method that can be used in combination with chemotherapy or radiotherapy for cancer treatment. Iron oxide nanoparticles are among the materials most popular for application in biomedicine due to their biocompatibility, biodegradability [4
  • ] and sufficiently high saturation magnetization [5]. However, only nanoparticles with a high specific absorption rate (SAR) in an alternating external magnetic field are suitable for magnetic hyperthermia. Therefore, a significant number of recent experimental studies [6][7][8][9][10][11][12][13][14
  • nanoparticles in biological media to quantitatively predict their heating efficiency in magnetic nanoparticle hyperthermia. In this respect we would like to stress that the behavior of an assembly of magnetic nanoparticles in viscous liquids and biological media is different [2][3]. It has been proved recently
PDF
Album
Full Research Paper
Published 29 Jan 2019

Hybrid Au@alendronate nanoparticles as dual chemo-photothermal agent for combined cancer treatment

  • Anouchka Plan Sangnier,
  • Romain Aufaure,
  • Laurence Motte,
  • Claire Wilhelm,
  • Erwann Guenin and
  • Yoann Lalatonne

Beilstein J. Nanotechnol. 2018, 9, 2947–2952, doi:10.3762/bjnano.9.273

Graphical Abstract
  • strategy to increase the PTT efficiency is the combination with magnetic hyperthermia [28], or with chemotherapy [29][30]. Using a one-pot synthesis strategy, we developed Au@alendronate NPs for a combined application of the antitumor activity of alendronate and an efficient gold-mediated PTT. We further
PDF
Album
Supp Info
Letter
Published 27 Nov 2018

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • and agarose phantom systems) showed the best characteristics for application as contrast agents in magnetic resonance imaging and for local heating using magnetic particle hyperthermia. Due to the octahedral shape and the large saturation magnetization of the magnetite particles, we obtained an
  • extraordinarily high r2-relaxivity of 495 mM−1·s−1 along with a specific loss power of 617 W·gFe−1 and 327 W·gFe−1 for hyperthermia in aqueous and agarose systems, respectively. The functional in vitro hyperthermia test for the 4T1 mouse breast cancer cell line demonstrated 80% and 100% cell death for immediate
  • hyperthermia; magnetic resonance imaging; nanomagnetism; theranostics; Introduction Biocompatible magnetite nanoparticles (NPs) are anticipated to provide new noninvasive therapies and early diagnostics for previously incurable diseases using a single, so-called “theranostics” platform [1][2][3]. The magnetic
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • from MRI contrast agents to drug-delivery systems, local heat sources in magnetic hyperthermia therapy of tumors, magnetically assisted transfection of cells, and magnetic field-assisted separation techniques. Let us to note that MRI is already widely used in human medicine and several iron-oxide-based
PDF
Album
Full Research Paper
Published 25 Sep 2018

Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications

  • Mykola Borzenkov,
  • Maria Moros,
  • Claudia Tortiglione,
  • Serena Bertoldi,
  • Nicola Contessi,
  • Silvia Faré,
  • Angelo Taglietti,
  • Agnese D’Agostino,
  • Piersandro Pallavicini,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2018, 9, 2040–2048, doi:10.3762/bjnano.9.193

Graphical Abstract
  • on glass slides [8]. In this case, the efficient photothermal response of the monolayers resulted in a local hyperthermia effect that was capable of killing bacteria in Staphylococcus aureus biofilms [8]. Therefore, the motivation of the present work lies on the assumption that the incorporation of
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • magnetically induced hyperthermia. In this study, a simple and scalable route for preparing nanocomposites with a high, uniform loading of magnetic nanoparticles is presented. The magnetic iron-oxide nanoparticles were functionalized with a methacrylate-based monomer that copolymerized in a toluene solution
  • values for the specific power loss when subjected to alternating magnetic fields, giving this material great potential for the magnetically induced hyperthermia-based treatment of cancer. Keywords: magnetic hyperthermia; magnetic properties; nanocomposites; superparamagnetic; Introduction Magnetic iron
  • coercivity in the absence of an external magnetic field [1][2]. Their colloidal suspensions are vital in a variety of technological [3] and biomedical applications [4], such as contrast agents in magnetic resonance imaging (MRI) [5][6], targeted drug delivery [6] and magnetic hyperthermia based on the
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • on the waveguide. Superparamagnetic iron oxide nanoparticles (SPIOs) have been extensively studied due to their unique chemical, physical, thermal, and mechanical applications in areas such as cell labeling, tissue repair, drug delivery, magnetic resonance (MR) contrast, and hyperthermia [25][26][27
PDF
Album
Full Research Paper
Published 18 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • ]. Generally, biocompatible magnetite (Fe3O4), iron oxide, iron sulfides and maghemite (Fe2O3) are synthesized using magnetotactic bacteria [156][157] that helps in targeted cancer treatment via magnetic hyperthermia, magnetic resonance imaging (MRI), DNA analysis and gene therapy [158]. Moreover, surface
PDF
Album
Review
Published 03 Apr 2018

Heavy-metal detectors based on modified ferrite nanoparticles

  • Urszula Klekotka,
  • Ewelina Wińska,
  • Elżbieta Zambrzycka-Szelewa,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2018, 9, 762–770, doi:10.3762/bjnano.9.69

Graphical Abstract
  • nanoparticles can be widely used in medicine for drug delivery, implants manufacture, as components of contrast agents in magnetic resonance imaging (MRI) as well as active centers in hyperthermia treatment [1]. The use of magnetic nanoparticles in drug delivery allows for a significant reduction of the amount
PDF
Album
Full Research Paper
Published 28 Feb 2018

Hyperthermic intracavitary nanoaerosol therapy (HINAT) as an improved approach for pressurised intraperitoneal aerosol chemotherapy (PIPAC): Technical description, experimental validation and first proof of concept

  • Daniel Göhler,
  • Stephan Große,
  • Alexander Bellendorf,
  • Thomas Albert Falkenstein,
  • Mehdi Ouaissi,
  • Jürgen Zieren,
  • Michael Stintz and
  • Urs Giger-Pabst

Beilstein J. Nanotechnol. 2017, 8, 2729–2740, doi:10.3762/bjnano.8.272

Graphical Abstract
  • application as well as deeper in-tissue drug penetration in conjunction with intracavitary hyperthermia. This article aims to present the HINAT approach together with a first proof of concept in direct comparison with MIP®-based PIPAC (designated as PIPAC-MIP). Description of the Hyperthermic Intracavitary
  • benefits of hyperthermia (e.g., thermal cytotoxicity, increased drug penetration due to reduced intratumoral pressure, increased drug deposition due to improved thermophoretic conditions), both the liquid reservoir of the LAU as well as the aerosol that exits the LAU can be heated in a controlled manner to
PDF
Album
Full Research Paper
Published 18 Dec 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • drug carriers [3][4][5], as transfection agents [6][7], for cancer treatment by local hyperthermia [8][9], for labelling [10][11] and for bioimaging [12][13][14]. The detection of cell-associated and internalised nanoparticles and the analysis of their interactions with extracellular or subcellular
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

From iron coordination compounds to metal oxide nanoparticles

  • Mihail Iacob,
  • Carmen Racles,
  • Codrin Tugui,
  • George Stiubianu,
  • Adrian Bele,
  • Liviu Sacarescu,
  • Daniel Timpu and
  • Maria Cazacu

Beilstein J. Nanotechnol. 2016, 7, 2074–2087, doi:10.3762/bjnano.7.198

Graphical Abstract
  • surfaces are often used for biomedical applications (e.g., biosensing, hyperthermia and MRI) [10]. In biomedical applications, the morphology of the nanoparticle significantly influences both pharmacokinetics and cell uptake [11]. Nanoparticles are also preferred as fillers for polymers to induce certain
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases

  • Oihane K. Arriortua,
  • Eneko Garaio,
  • Borja Herrero de la Parte,
  • Maite Insausti,
  • Luis Lezama,
  • Fernando Plazaola,
  • Jose Angel García,
  • Jesús M. Aizpurua,
  • Maialen Sagartzazu,
  • Mireia Irazola,
  • Nestor Etxebarria,
  • Ignacio García-Alonso,
  • Alberto Saiz-López and
  • José Javier Echevarria-Uraga

Beilstein J. Nanotechnol. 2016, 7, 1532–1542, doi:10.3762/bjnano.7.147

Graphical Abstract
  • the Basque Country, UPV/EHU, 20018 Donostia, Spain, Galdakao Usansolo Hospital, 48960 Bizkaia, Spain 10.3762/bjnano.7.147 Abstract This work reports important advances in the study of magnetic nanoparticles (MNPs) related to their application in different research fields such as magnetic hyperthermia
  • achieved. The nanoparticles were characterized by transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), electron magnetic resonance (EMR) spectroscopy and magnetic hyperthermia. The nanoparticles present superparamagnetic behavior with very high magnetization values, which yield
  • hyperthermia values above 500 W/g for magnetic fluids. These fluids have been administrated to rats, but instead of injecting MNP fluid directly into liver tumors, intravascular administration of MNPs in animals with induced colorectal tumors has been performed. Afterwards the animals were exposed to an
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2016

A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

  • Kamil Moldosanov and
  • Andrei Postnikov

Beilstein J. Nanotechnol. 2016, 7, 983–989, doi:10.3762/bjnano.7.90

Graphical Abstract
  • hyperthermia with the help of gold nanoparticles [1]. The case (iv) might seem plausible (albeit similarly “useless”); the consideration against it is that a transversal phonon will likely be “out of resonance” with the energy delivered by a longitudinal phonon, since their dispersion relations are different
PDF
Album
Full Research Paper
Published 06 Jul 2016
Other Beilstein-Institut Open Science Activities