Search results

Search for "imaging" in Full Text gives 842 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • Elangovan Sarathkumar Rajasekharan S. Anjana Ramapurath S. Jayasree Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India 10.3762/bjnano.14.82 Abstract Lateral flow
  • of nanorods makes them excellent light absorbers for photothermal applications, while greater dimensions makes them efficient light scatterers for imaging applications [57]. The absorption and photothermal characteristics of four differently sized nanorods were analysed by Sun and co-workers. The
  • such as photothermal therapy, imaging, and LFAs [73]. Composition-dependent photothermal properties Recently, nanocomposite materials have been employed for the development of photothermal biosensors for the detection of cancer biomarkers or whole cancerous cells, antibiotic residues, and toxins [74
PDF
Album
Review
Published 04 Oct 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • potential and can be effectively used as imaging/therapeutic agents (Table 1). In some cases, ACNPs provide opportunities for image-guided therapy with overall theranostic applications. The NP-mediated targeted delivery ultimately provides advanced diagnostic and therapeutic options for early diagnosis and
PDF
Album
Review
Published 04 Sep 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • , the ability for magnetic manipulation, the possibility of being used in magnetic resonance imaging, and the ability to generate controlled heat non-invasively when exposed to an alternating magnetic field [7][8]. In 2019, our group published an article describing a low-cost green synthesis of SPIONs
  • , scanning electron microscopy and chemical element mapping analysis were carried out to confirm the uptake of the SPIONs by L. amazonensis intracellular amastigotes after removing the plasma membrane to expose the cytoplasmic environment (Figure 2). Secondary electron imaging revealed intracellular
  • amastigotes inside the parasitophorous vacuoles (Figure 2A). Backscattered electron imaging showed several small electron-lucent structures randomly distributed throughout the macrophage cytosol, inside the parasitophorous vacuoles (Figure 2B, arrows), and in the intracellular amastigotes (Figure 2B
PDF
Album
Full Research Paper
Published 30 Aug 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • flat conducting substrates, such as metal surfaces and highly oriented pyrolytic graphite (HOPG), under ultrahigh vacuum (UHV) conditions, at solid/air or solid/liquid interfaces [23][24][25][26][27][28]. Although UHV-STM offers high-resolution imaging, it requires large, complex, and expensive
  • hydrogen atoms of n-dodecane with a trans zigzag conformation are located near the centers of the six-membered rings of C96H24, and the molecule is oriented along one of the lattice directions of C96H24, indicated by the blue arrows. In STM imaging, changes in bias voltage (V) and tunneling current (I
PDF
Album
Review
Published 23 Aug 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • dissolution of gold. We present scanning electron micrographs and elemental imaging analyses by energy dispersive X-ray spectroscopy to examine the effect of solutions of each species on the gold film. This work highlights the risk of unwanted etching during some routes to NHC-based surface functionalization
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • rate than any other acid in the dark. TEM imaging of nanoceria in citric and β-hydroxybutyric acid supported the DLS results. Relating the carboxylic acid composition (number of carboxylic acid groups, total number of carbons, aliphatic carbons, and hydroxy groups and their molecular ratios) to the
  • transmission electron microscopy (TEM) imaging, samples were sonicated for 10 min in a sonication bath. Lacey carbon, 300 mesh, copper grids were dipped into the solution for approximately 5 s and dried overnight at room temperature. TEM was used to obtain images of particles throughout the experiment’s
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • electrode materials.a Acknowledgements The authors would like to thank Mr. Sumit Sharma, Research Scholar, IIT Bombay for XRD and TEM imaging. Author Contributions Sanju Tanwar: conceptualization, research methodology, experimental design, electrochemical investigation, original draft writing and
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • in MOFs can either be quenched or enhanced. Due to their exceptional characteristics, MOFs have found usage in a variety of fields, including sensors, gas adsorption, energy storage, drug delivery, catalysis, water treatment, and bio-medical imaging [89][90][91][92][93][94][95][96][97][98][99][100
PDF
Album
Review
Published 01 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • -resolution CLSM imaging or atomic force microscopy. As it was visualized by CLSM [55][56][57], the basal parts of some short and long setae appear to be relatively soft and seem to contain resilin or other proteins. This should influence the mobility of the rotating setae. To account for this in the
  • right side = 50 µm. Figure 1 was adapted (by adding arrows and circles) from [57], J. Michels, “Confocal laser scanning microscopy – detailed three-dimensional morphological imaging of marine organisms”, Imaging Marine Life, with permission from John Wiley and Sons. Copyright © 2014 Wiley-VCH Verlag
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Observation of multiple bulk bound states in the continuum modes in a photonic crystal cavity

  • Rui Chen,
  • Yi Zheng,
  • Xingyu Huang,
  • Qiaoling Lin,
  • Chaochao Ye,
  • Meng Xiong,
  • Martijn Wubs,
  • Yungui Ma,
  • Minhao Pu and
  • Sanshui Xiao

Beilstein J. Nanotechnol. 2023, 14, 544–551, doi:10.3762/bjnano.14.45

Graphical Abstract
  • confinement in a relatively simple way. Such strong resonances endow PhC-based BIC devices with a strong enhancement of light–matter interaction, indicating great potential for applications in ultrasensitive molecular fingerprint detection [12][13][35], hyperspectral biosensing imaging [36], novel flat light
  • refitted to test the scattering spectrum of the sample, as illustrated in Figure 3b. The yellow and red lines represent the imaging and measurement optical paths in the microscope. The imaging light path was utilized to adjust the illuminating position on the sample. In the measurement light path, a
  • experimental setup. The yellow and red lines indicate the imaging and measurement light paths, respectively. PBS: polarization-dependent beam splitter; OSA: optical spectrum analyzer. Measurement results. (a) Scattering spectrum over a wide range of wavelengths. (b, c) Resonances observed around 1555 and 1582
PDF
Album
Full Research Paper
Published 27 Apr 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • . SEM/EDS analysis provided detailed information about the structural features of yeast cells embedded in the silica matrix. Figure 4 displays the most relevant findings of this imaging study. Figure 4A shows that the yeast cells are found in specific points of the matrix, mainly arranged in groups
  • without staining. Electron microscopy imaging was conducted using a field-emission scanning electron microscope FEI-NOVA NanoSEM 230 equipped with an Apollo XL silicon drift detector from EDAX-Ametek or using a high-resolution JEOL IT500HR/LA microscope equipped with an energy dispersive X-ray
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field

  • Ruslan A. Rytov and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2023, 14, 485–493, doi:10.3762/bjnano.14.39

Graphical Abstract
  • of the field-free point is obtained for assemblies with different nanoparticle size distributions. The results obtained seem to be helpful for the development of a promising joint application of magnetic nanoparticle imaging and magnetic hyperthermia. Keywords: dynamic hysteresis loop; magnetic
  • hyperthermia; magnetic nanoparticles; magnetic particle imaging; specific absorption rate; static magnetic field; Introduction Magnetic nanoparticles, mainly iron oxides, are promising materials for the diagnosis and therapy of oncological diseases [1][2][3]. Important fields of application of magnetic
  • nanoparticles in biomedicine are magnetic particle imaging (MPI) [4][5][6] and magnetic hyperthermia (MH) [1][2][6][7]. Magnetic hyperthermia uses the ability of magnetic nanoparticles to generate heat under the influence of an external alternating (ac) magnetic field of moderate frequency, f = 200–400 kHz, and
PDF
Album
Full Research Paper
Published 14 Apr 2023

A mid-infrared focusing grating coupler with a single circular arc element based on germanium on silicon

  • Xiaojun Zhu,
  • Shuai Li,
  • Ang Sun,
  • Yongquan Pan,
  • Wen Liu,
  • Yue Wu,
  • Guoan Zhang and
  • Yuechun Shi

Beilstein J. Nanotechnol. 2023, 14, 478–484, doi:10.3762/bjnano.14.38

Graphical Abstract
  • (GOSI) [7], germanium on insulating substrate (GOI) [8][9], and germanium on silicon nitride substrate (GOSN) [10]. Among them, Ge-on-Si platforms have been widely applied in on-chip sensors, nonlinear optics, free space communication, and thermal imaging [1][6] because portable, cost-effective, and
PDF
Album
Full Research Paper
Published 06 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • imaging at the atomic and molecular level has revealed the self-assembly mechanisms of crystal nuclei in organic crystals and metal-organic frameworks [42]. It has become possible to obtain statistical information on the size and structure of individual prenucleation clusters that cannot be examined by
  • intermediates, and the final product were identified in situ by differential conductance imaging using a CO-modified tip. The bias voltage was set above the lowest unoccupied molecular orbital energy and the probe was placed over the C–Br bond, which was then broken. After the reaction, a dip appeared on the
  • remove the second bromine atom. Close-up observation of the structure showed that the molecule was fully debrominated. Differential conductance imaging confirmed that the molecular skeleton, including the two naphthalene moieties, was clearly resolved. It was also observed that the two naphthalene
PDF
Album
Review
Published 03 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • temperature and reactivity. With broad applications in therapy [22][23], laser combined imaging, solar vapour generation [24], and biosensors [25], the global market for PT devices is expected to be a multimillion dollar enterprise by 2025 [26]. This review will focus on concepts such as the theoretical
PDF
Album
Review
Published 27 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • some of the areas of focus in the field known as nanobiotechnology [1]. Nanobiotechnology has a wide array of applications: from organ-on-a-chip technologies to nanobiosensors and nanocatalysts for advanced characterisation and imaging tools, from intelligent drug delivery systems to artificial
PDF
Editorial
Published 27 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • are assessed with the use of fluorescent-labeling carriers and the expression of fluorescent proteins (e.g., enhanced green fluorescent protein). Both of which are typically assessed by widefield fluorescent microscopy/confocal microscopy (referred to as “imaging”) and/or flow cytometry (Table 1
  • ) [16]. Unfortunately, confocal imaging is limited by relatively low throughput (even with automation) and can be ambiguous when determining internalization within 500 nm of the cell membrane [17]. However, widefield fluorescence microscopy is still widely used when it comes to observing the expression
  • of proteins after transfection. Because organelles (e.g., endosomes) are not uniformly distributed throughout the cell, these 2D imaging methods are rarely accurate for quantification of either uptake or transfection. Nevertheless, they still have been the methods of choice during the last five years
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • , nanocarriers need to be engineered to add functionalities, both in their cores and at their surfaces. This includes therapeutic drugs and genes, targeting moieties, performance enhancers (e.g., for barrier penetration and to avoid opsonization), and imaging agents [2][3]. Core and matrix of the nanoparticles
  • imaging and magnetic hyperthermia. These particle sizes were smaller than those obtained by high-energy methods (i.e., sonication) [60]. The presence of PLGA in the oil (organic phase) impacts the phase behavior of surfactant systems and thus the phase transitions that take place upon water addition to
PDF
Album
Review
Published 13 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • -assembly of the particles The effect of the SiBP on the self-assembly of the as-grown particles was investigated via SEM and UV–vis spectroscopy. Single-layer and multilayer assemblies were investigated by using different dilutions of the as-synthesized particles. SEM imaging showed that the particles from
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • ., magnetic resonance imaging, heat production, magnetic manipulation, and enzyme mimics) [99]. Tumor ablation based on magnetothermy is safe for humans as the energy of the magnetic field is only absorbed by magnetic NPs and not by normal tissue [79]. However, magnetic NPs are prone to aggregation and
  • patients and has shown promise for medical prospects. Some of the applications related to biomimetic cancer cell membrane-coated agents are listed and described below. 5.1 Magnetic resonance imaging Magnetic nanoparticles are widely used in magnetic resonance imaging (MRI) because they can improve imaging
  • distributed in tumor tissue for effective imaging because of the lack of targeting capability. An appropriate surface coating could enhance their diagnostic value for medical imaging [122]. Biomimetic nanodelivery systems are of great significance for imaging agents [101]. H460 lung cancer cell membrane
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • expression has not only improved current therapeutic plans for cancer patients but has had an impact on the design approaches of the nanotools for cancer imaging and anticancer drug delivery. In recent years, new platforms to enhance the low tumor targeting capacity of nanomedicines using biomimetic
  • , gold nanoshells, and microbots) and imaging contrast nanoparticles (quantum dots and iron oxide), after homing into the tumor environment [113]. Xu et al. described an injectable nanoparticle generator (iNPG) showing substantial natural tumor tropism designed as aminopropyltriethoxysilane (APTES
PDF
Album
Review
Published 22 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • nanoparticles shifts due to changes in the surrounding medium [14][17][26]. Thus, the same laser source may lose its suitability for applications such as photothermal therapeutics, photoacoustic imaging, and drug delivery. Also, the maximum absorption of the incident radiation is desired, which depends on the
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • on the edges and planes perpendicular to the imaging plane, although they can be above or below each other. Therefore, it can be concluded that the irregular PtNPs with dimensions of 1–4 nm are evenly deposited on the surface of carbon particles. Changing the number of laser pulses from 50000 to
  • morphology of the carbon material was examined using a scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy (EDS). SEM measurements of the samples were carried out using a Quanta 3D FEG microscope (FEI, United States). The surface imaging and EDS measurements were done at an
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • test internalization of CQDs, Hela cells were treated for 48 h with a concentration of 200 µg/mL CQDs. As shown in Figure 6b, fluorescence imaging demonstrated that CQDs penetrated Hela cells well (compared to Hela cells treated with vehicle control, shown in Figure 6a) and were mainly in the cytoplasm
  • -transformed infrared spectroscopy (FTIR), UV–vis spectrophotometry, photoluminescence spectroscopy (PL), and electron paramagnetic resonance (EPR). CQDs/PU composite samples were characterized by UV–vis, AFM, FTIR, PL, EPR, and luminescence measurements. For TEM imaging (JEOL JEM-1400 operated at 120 kV
  • ), CQDs were deposited on graphene oxide copper grids with 300 mesh by drop casting. For AFM imaging, all CQDs samples were deposited on freshly cleaved mica. The AFM measurements were conducted using a Quesant microscope operating in tapping mode in air at ambient temperature. Statistical analysis of all
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • coupling was proven in doubly clamped beams, square membranes and circular membranes [18][26][27][28][29][30][31]. For atomic force microscopy imaging, a slight angle between the sensing mechanical resonator and the sample of interest is required, ensuring that the only contact occurs between the sample
  • multifrequency AFM has improved both imaging contrast and the amount of extracted information from AFM experiments by exploiting the nonlinearity of the tip–surface interaction [32][33][34][35][36]. The methods applied excel in both their creativity and engineering prowess. A first example is on-resonance
PDF
Album
Full Research Paper
Published 19 Jan 2023
Other Beilstein-Institut Open Science Activities