Search results

Search for "interfaces" in Full Text gives 418 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Effect of annealing treatments on CeO2 grown on TiN and Si substrates by atomic layer deposition

  • Silvia Vangelista,
  • Rossella Piagge,
  • Satu Ek and
  • Alessio Lamperti

Beilstein J. Nanotechnol. 2018, 9, 890–899, doi:10.3762/bjnano.9.83

Graphical Abstract
  • view TEM image of CeO2/TiN (Figure 3) confirms ToF-SIMS observations about the interfaces, showing the broadening of the CeO2/TiN interface and the appearance of a thick (ca. 5 nm) interlayer of oxidized TiN or of mixed composition (Ti–N–O). We can further observe that the CeO2 layer on TiN deos not
PDF
Album
Full Research Paper
Published 15 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • in the literature [32][33]. Xian and coworkers have studied the photocatalytic degradation of MO under simulated solar light irradiation in BaTiO3–g-C3N4 composites with an efficient charge separation of photogenerated charge carriers at the interfaces [30]. Leong et al. have successfully made a
  • responsible for the separation and migration of photogenerated charges. The appropriate band positions of the semiconductor materials produce space charge accumulation/depletion at the interfaces, which helps in the effective separation of photogenerated charge carriers [59]. In this regard, the valence band
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • be formed around the NPs and AFM tip according to Asay [32]. The form a liquid condensate takes around the tip–substrate contact area depends on the spreading coeffiecient of the system. The spreading coefficient between solid–liquid–air interfaces is given by where γS is the interface energy of the
  • excitation modes contribute strongly to the energy transfer to the substrate and thus to its physico-chemical and mechanical properties resulting in decrease of adhesion forces during a contact between two interfaces. On the contrary, longer molecules (n > 8) self-assemble in a well-packed system with higher
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • characteristic features of the noble metal nanomaterials. Moreover, the formation of interfaces between noble metal particles and semiconductor materials further results in the formation of a Schottky junction. Thereby, the plasmonic characteristics have opened up a new direction in promoting an alternative path
PDF
Album
Review
Published 19 Feb 2018

Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray’s law

  • Dalei Jing,
  • Shiyu Song,
  • Yunlu Pan and
  • Xiaoming Wang

Beilstein J. Nanotechnol. 2018, 9, 482–489, doi:10.3762/bjnano.9.46

Graphical Abstract
  • some solid–liquid interfaces for the optimal design of the fractal tree-like channel network. The present work reinvestigates Murray’s law for laminar flow in a fractal tree-like microchannel network considering slip condition. It is found that the slip increases the complexity of the optimal design of
  • debatable, because it has been found that there is another hydrodynamic condition, the slip condition, at some solid–liquid interfaces [19][20][21][22][23]. Figure 1 gives a simplified schematic of the no-slip condition and the slip condition, indicating that a significant difference between the no-slip
  • relative velocity between the solid wall and the adjacent liquid, and is the liquid velocity gradient in the direction perpendicular to the solid wall. The reported value of the slip length at various solid–liquid interfaces varies from tens of micrometers down to several nanometers [19][21][22][23]. Thus
PDF
Album
Full Research Paper
Published 08 Feb 2018

High-contrast and reversible scattering switching via hybrid metal-dielectric metasurfaces

  • Jonathan Ward,
  • Khosro Zangeneh Kamali,
  • Lei Xu,
  • Guoquan Zhang,
  • Andrey E. Miroshnichenko and
  • Mohsen Rahmani

Beilstein J. Nanotechnol. 2018, 9, 460–467, doi:10.3762/bjnano.9.44

Graphical Abstract
  • ; Introduction Metasurfaces are thin and flat surfaces that are created using subwavelength optical antennas with various optical properties patterned at interfaces [1][2], enabling control over the polarization, phase, amplitude, and dispersion of light. Metasurfaces are growing in popularity as their optical
PDF
Album
Full Research Paper
Published 06 Feb 2018

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

  • Stefan Fringes,
  • Felix Holzner and
  • Armin W. Knoll

Beilstein J. Nanotechnol. 2018, 9, 301–310, doi:10.3762/bjnano.9.30

Graphical Abstract
  • a function of the cover glass position z in air to avoid the effect of the pressure changes mentioned above, see Figure 2a. The signal arises from the interference of light rays reflected by the interfaces of the glass–water–polymer–silicon stack. We have developed an optical model [23] based on the
  • interfaces. This fact leads to a varying phase shift of the interference signal pixel by pixel. AFM measurements yield the following root-mean-square (RMS) roughnesses: ≈ 0.4 nm for the cover glass, ≈ 0.3 nm for the polymer surface and ≈ 0.2 nm for the silicon wafer. Since the silicon wafer is relatively
PDF
Album
Full Research Paper
Published 26 Jan 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • hybrid devices such as dye-sensitized solar cells. However, a key parameter for optimized interfaces is not only the choice of the compounds but also the properties of adsorption. Here, we investigated the deposition of an organic dye precursor molecule on a NiO(001) single crystal surface by means of
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • conductivity, but also to identify and quantify sizable and non-linear contact resistances at the buried nanowire–electrode interfaces. Complementing these data with thermal measurements, we obtain a device model further permitting separate extraction of the local thermal nanowire and interface conductivities
  • material or doping interfaces and at defects or constrictions, but also in areas of strong local thermal insulation. To differenciate between different origins of hot spots from temperature data alone is oftentimes not possible. Nanometre-sized hot spots can strongly influence electrical transport through
  • traced by KFM. The voltage drop at interfaces to electrodes directly translates to the contact resistance, allowing one to separate contact and channel resistances. Thereby contact resistance values can be extracted even from small samples, for which four-probe methods or transmission-line methods cannot
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Growth model and structure evolution of Ag layers deposited on Ge films

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Ewa Górecka,
  • Jakub Kierdaszuk and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2018, 9, 66–76, doi:10.3762/bjnano.9.9

Graphical Abstract
  • -assembly; silver; thin films; Introduction Silver is a noble metal with lowest loss in the visible to the near-infrared wavelengths; therefore, the surface plasmon polariton (SPP) wave propagation length crucial for plasmonic devices is greatest at Ag/dielectric interfaces [1][2][3]. A pure Ag layer of 35
  • the intensity of the Raman response. Conclusion Silver nanolayers deposited on ultrathin Ge wetting films exhibit gradient growth, with large and flat silver nanocrystals at the SiO2/Ge/Ag interfaces and decreasing grain size with increasing distance from the substrate. Such gradient growth is the
  • introduce additional errors originating from different reflection at air/glass and silver/glass interfaces. Raman spectra were recorded using Renishaw invia RE04 spectrometer equipped with an excitation source of Nd:YAG laser operating at 532 nm wavelength. Laser spot of 1.5 μm diameter was obtained by
PDF
Album
Full Research Paper
Published 08 Jan 2018

Beyond Moore’s technologies: operation principles of a superconductor alternative

  • Igor I. Soloviev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Mikhail Yu. Kupriyanov,
  • Alexander L. Gudkov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 2689–2710, doi:10.3762/bjnano.8.269

Graphical Abstract
PDF
Album
Review
Published 14 Dec 2017

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • during chemical lift-off lithography is a scarcely studied hybrid material. We show that these Au–alkanethiolate layers on poly(dimethylsiloxane) (PDMS) are transparent, functional, hybrid interfaces that can be patterned over nanometer, micrometer, and millimeter length scales. Unlike other ultrathin Au
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • properties of the resulting film, the morphology of particle films, and the nature of the interfaces. The effects of the ligands on sintering, cross-linking, and self-assembly of particles in electronic materials are discussed. Keywords: conductivity; inks; layers; ligands; nanoparticles; Introduction
  • the surface of metal nanoparticles lead to a different class of composites. Grafting or growing polymer chains from the metal surface can provide well-defined interfaces between polymer and particles that are favorable for charge transport [139][140]. Vijayakumar et al. stabilized gold nanoparticles
  • agents are an emerging option that could yield hybrid, stable particles with low contact resistances at well-defined inorganic-organic interfaces. The advent of the bulk solution synthesis of silver nanowires brought new dynamics to the field of nanoparticle-based transparent materials. Polyol synthesis
PDF
Album
Review
Published 07 Dec 2017

Robust nanobubble and nanodroplet segmentation in atomic force microscope images using the spherical Hough transform

  • Yuliang Wang,
  • Tongda Lu,
  • Xiaolai Li,
  • Shuai Ren and
  • Shusheng Bi

Beilstein J. Nanotechnol. 2017, 8, 2572–2582, doi:10.3762/bjnano.8.257

Graphical Abstract
  • ameliorate oxygen mass transfer to living microorganisms [7], reduce drag force at solid–liquid interfaces in micro/nanofluidics [2][8][9], and enhance ultrasonic tumor imaging contrast [10]. Regarding NDs, they can be applied to fabricate nanolenses on solid surfaces to modify them for antireflection and
PDF
Album
Full Research Paper
Published 01 Dec 2017

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • affect the effective value of slip length in measurements. Moreover, there are no studies on the effect of roughness on slip at interfaces between oil and superoleophilic/superoleophobic surfaces. A theoretical description of the real surface roughness is yet to be found. Results show that the effective
  • interfaces. Keywords: boundary slip; roughness; superoleophilic; superoleophobic; Introduction In micro/nanofluidic systems, the increasing surface to volume ratio leads to unignorable fluid drag at the solid–liquid interface. The reduction of fluid drag is an important issue to improve the efficiency of
PDF
Album
Full Research Paper
Published 27 Nov 2017

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • penetration of liquid solution into the interfaces formed between the metal films and the SOG substrate. To prevent the degradation in performance that this engendered, a conformal ≈6 nm thick Al2O3 passivation film was deposited on top of the metal by atomic layer deposition (Cambridge Nanotech). Bulk
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017

Towards molecular spintronics

  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 2464–2466, doi:10.3762/bjnano.8.245

Graphical Abstract
  • Georgeta Salvan Dietrich R. T. Zahn Physics Department, Semiconductor Physics, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany 10.3762/bjnano.8.245 Keywords: density functional theory; electrical and spin transport; Green’s function method; interfaces; magnetic
  • . Fabrication, characterization, and optimization of molecular thin films and interfaces: Various deposition techniques to create suitable molecular films were tested for a variety of molecules. The structure, morphology, and molecular orientation of the layers were fundamentally characterized and optimized
  • guests with topics beyond the molecular systems investigated in our Research Unit, for example: theoretical predictions on metal/C60 interfaces [16], magneto-resistive donor/acceptor transistors [17], spin-crossover complexes [18], ferromagnetic thin films obtained from organic blends [19], and
PDF
Editorial
Published 21 Nov 2017

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • independent forms. The formation of highly-dispersed copper species promotes the adsorption of CO molecules, while the presence of oxygen vacancies provided by CeO2 can in turn create active oxygen in the oxidation reactions [12][13]. Therefore, the creation of two-phase interfaces as numerous as possible and
PDF
Album
Full Research Paper
Published 16 Nov 2017

Surfactant-induced enhancement of droplet adhesion in superhydrophobic soybean (Glycine max L.) leaves

  • Oliver Hagedorn,
  • Ingo Fleute-Schlachter,
  • Hans Georg Mainx,
  • Viktoria Zeisler-Diehl and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2017, 8, 2345–2356, doi:10.3762/bjnano.8.234

Graphical Abstract
  • interfaces, usually termed wettability, can be measured as a static or dynamic contact angle [23]. Surfaces on which a water droplet forms a spherical shape are characterized by a high contact angle (CA). Plant surfaces with high contact angles above 150° are termed superhydrophobic [24][25]. Wettable
PDF
Album
Full Research Paper
Published 08 Nov 2017

Vapor-based polymers: from films to nanostructures

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 2219–2220, doi:10.3762/bjnano.8.221

Graphical Abstract
  • Meike Koenig Joerg Lahann Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Biointerfaces Institute, University of Michigan (UM), 2800 Plymouth Rd., Ann Arbor, MI 48109, USA 10.3762/bjnano
PDF
Editorial
Published 24 Oct 2017

Velocity dependence of sliding friction on a crystalline surface

  • Christian Apostoli,
  • Giovanni Giusti,
  • Jacopo Ciccoianni,
  • Gabriele Riva,
  • Rosario Capozza,
  • Rosalie Laure Woulaché,
  • Andrea Vanossi,
  • Emanuele Panizon and
  • Nicola Manini

Beilstein J. Nanotechnol. 2017, 8, 2186–2199, doi:10.3762/bjnano.8.218

Graphical Abstract
  • this method is quite effective in the context of fluid boundary lubrication, in the context of dry friction and crystalline interfaces nontrivial couplings of longitudinal and transverse modes [32][41][42] may lead to undesired γ-dependent effects. In the present work we propose a different, minimalist
  • nature of the contact, and may be suitable to describe friction as generated at crystalline incommensurate solid-solid interfaces. Instead, in the present model dissipation occurs simultaneously through whatever phonon has a phase velocity matching the slider speed, and resonant peaks arise as more and
PDF
Album
Full Research Paper
Published 19 Oct 2017

Ta2N3 nanocrystals grown in Al2O3 thin layers

  • Krešimir Salamon,
  • Maja Buljan,
  • Iva Šarić,
  • Mladen Petravić and
  • Sigrid Bernstorff

Beilstein J. Nanotechnol. 2017, 8, 2162–2170, doi:10.3762/bjnano.8.215

Graphical Abstract
  • a range of parallel Bragg sheets centred in the specular plane (qy = 0). These kind of scattering maxima are usually observed from periodic multilayers with correlated roughness among the interfaces [25][26]. The angular positions of the Bragg sheets yield the periodicity of the corresponding
  • a loss of topography conformation among adjacent interfaces. In any case, it is important to note that annealing promotes the formation of NPs, the morphology of which depend on the temperature as well as on the thickness of the metallic layer. A more detailed information about the shape and size of
  • the same time, due to the high diffusion rate and nanoparticle growth, the interface topography changes as well. These stochastic rearrangements of interfaces are completely independent from layer to layer, resulting in the loss of vertical correlations among the interface topographies. This explains
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2017

Ester formation at the liquid–solid interface

  • Nguyen T. N. Ha,
  • Thiruvancheril G. Gopakumar,
  • Nguyen D. C. Yen,
  • Carola Mende,
  • Lars Smykalla,
  • Maik Schlesinger,
  • Roy Buschbeck,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Michael Mehring and
  • Michael Hietschold

Beilstein J. Nanotechnol. 2017, 8, 2139–2150, doi:10.3762/bjnano.8.213

Graphical Abstract
  • the other hand, solid–liquid interfaces are much more often encountered in real world applications ranging from heterogeneous catalysis to biomembranes. Heating is in such cases usually limited by the boiling of the liquid phase, and other means to initiate on-surface reactions are often required
  • ambient conditions [27]. Molecular mixture at solid−liquid interfaces could possibly initiate chemical reactions and be monitored in situ with scanning tunneling microscopy (STM). Metal complexation reactions, polymerizations [28][29][30] and photochemical dimerization [31] are shown to be initiated at
  • the solid–liquid interface. Initial efforts have been made to perform chemical reactions leading to covalently stabilized adlayers at metal crystal/UHV interfaces [2][10][11][12]. However, the size of covalently linked domains is often limited in UHV due to low diffusion of the components forming the
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2017

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • and the p-type electrical conductivity was measured with free hole concentration ranging from 2.7 × 1016 cm−3 to 1.4 × 1017 cm−3. The estimated electrical mobility was in the range ≈0.3–39 cm2/Vs and the dominant scattering mechanism is ascribed to the WZ/ZB interfaces. Electrical and optical
  • , which cannot explain the differences in the obtained mobility values. So, in our opinion, the scattering at the WZ/ZB interfaces along the nanowire’s axis is the dominant mechanism in Mg-doped GaAs nanowires, which is in accordance with the XRD results that show the occurrence of both crystalline phases
  • -radiative defects as a consequence of the increase of the Mg doping. In the case of i), if the radiative transitions are related with recombination of charge carriers in each side of the WZ/ZB interfaces, larger segments of both phases should be present in the nanowires to allow a decrease of the
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • tetracyanoquinodimethane (TCNQ) [5][6]. At interfaces between different organic materials interesting physical phenomena appear, in most cases due to (partial) charge transfer between the materials. One example is the formation of a two-dimensional metallic interface between insulating organic crystals [7][8]. Other
  • stack. c), d) Density of states (DOS) of the molecule-Au(111) interfaces as obtained from the calculations. The overall DOS as well as the projections onto the molecule and metal centers are shown. I–V curves calculated within the DFT-NEGF method for the sandwich structure a) CoPc/CoPc and b) F16CoPc
  • b) the F16CoPc/MnPc stack. c), d) DOS of the molecule-Au(111) interfaces as obtained from the calculations. The overall DOS as well as the projections onto the molecule and metal centers are shown. Calculated TMR for the sandwich structure a) CoPc/CoPc and b) F16CoPc/MnPc on Ni(111). The TMR as a
PDF
Album
Full Research Paper
Published 06 Oct 2017
Other Beilstein-Institut Open Science Activities