Search results

Search for "light absorption" in Full Text gives 156 result(s) in Beilstein Journal of Nanotechnology.

Microplastic pollution in Himalayan lakes: assessment, risks, and sustainable remediation strategies

  • Sameeksha Rawat,
  • S. M. Tauseef and
  • Madhuben Sharma

Beilstein J. Nanotechnol. 2025, 16, 2144–2167, doi:10.3762/bjnano.16.148

Graphical Abstract
  • simultaneously utilizing the abundant UV radiation [75]. It has been demonstrated that the light absorption of ZnO and TiO2 is improved by defect engineering, such as the introduction of oxygen vacancies. According to Kim and Youn, these defects trap light energy, which lowers charge carrier recombination rates
PDF
Album
Supp Info
Review
Published 25 Nov 2025

Electrical, photocatalytic, and sensory properties of graphene oxide and polyimide implanted with low- and medium-energy silver ions

  • Josef Novák,
  • Eva Štěpanovská,
  • Petr Malinský,
  • Vlastimil Mazánek,
  • Jan Luxa,
  • Ulrich Kentsch and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2025, 16, 1794–1811, doi:10.3762/bjnano.16.123

Graphical Abstract
  • spectral range, enhancing light absorption and enabling the utilization of a broader portion of the solar spectrum [19]. These combined effects result in a significantly higher photocatalytic efficiency of implanted samples compared to their non-implanted samples, both in terms of reaction rate and quantum
PDF
Album
Full Research Paper
Published 13 Oct 2025

Photocatalytic degradation of ofloxacin in water assisted by TiO2 nanowires on carbon cloth: contributions of H2O2 addition and substrate absorbability

  • Iram Hussain,
  • Lisha Zhang,
  • Zhizhen Ye and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2025, 16, 1567–1579, doi:10.3762/bjnano.16.111

Graphical Abstract
  • on porous materials, such as carbon-based adsorbents. These innovations help to slow down electron–hole recombination, broaden light absorption, and enhance surface adsorption sites [11]. Cao et al. synthesized TiO2 nanowires on reduced graphene oxide (rGO) through a solvothermal method, which
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • surrounding solvent, owing to the efficient light absorption capability of the NPs and their limited thermal transfer to the solvent. [35][63][72][73][74]. LIL also leads to phase transitions and morphological changes (Figure 7a–d) depending on the laser fluence and irradiation time [42]. Schematic
PDF
Album
Review
Published 27 Aug 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • higher light absorption, and greater photoemission output, resulting in enhanced bactericidal activity against S. aureus (Figure 7). The Ir-complex liposomes interact efficiently with 450 nm LED light, leading to ROS generation and subsequent bacterial inactivation at the site of an infected chronic skin
PDF
Album
Review
Published 15 Aug 2025

Enhancing the photoelectrochemical performance of BiOI-derived BiVO4 films by controlled-intensity current electrodeposition

  • Huu Phuc Dang,
  • Khanh Quang Nguyen,
  • Nguyen Thi Mai Tho and
  • Tran Le

Beilstein J. Nanotechnol. 2025, 16, 1289–1301, doi:10.3762/bjnano.16.94

Graphical Abstract
  • limited by material challenges, including insufficient light absorption, high electron–hole recombination rates, and poor stability under operating conditions [5][6]. Among various semiconductor materials, bismuth vanadate (BiVO4) has attracted considerable interest due to its strong visible light
  • suggests an optimal concentration of oxygen vacancies that broadens light absorption while avoiding excessive recombination of the charge carriers. In contrast, BiVO4(146) has a clear absorption edge and very little tailing, indicating that it has fewer defects but does not absorb light well beyond 520 nm
  • . These findings match other studies that connect oxygen vacancies to the spread of light absorption and smaller optical bandgaps in BiVO4 [26]. Vibrational properties (Raman) The Raman spectra (Figure 4) corroborated the XRD findings, displaying characteristic peaks of monoclinic BiVO4 at 219, 329, 370
PDF
Album
Full Research Paper
Published 07 Aug 2025

Investigation of the solubility of protoporphyrin IX in aqueous and hydroalcoholic solvent systems

  • Michelly de Sá Matsuoka,
  • Giovanna Carla Cadini Ruiz,
  • Marcos Luciano Bruschi and
  • Jéssica Bassi da Silva

Beilstein J. Nanotechnol. 2025, 16, 1209–1215, doi:10.3762/bjnano.16.89

Graphical Abstract
  • its bioavailability and light absorption capacity will be increased [5]. To overcome this problem, the development of drug delivery systems, such as poloxamer-based ones, has played an important role on the delivery of dyes for PDT [8][9][10]. Poloxamers are triblock copolymers with thermosensitive
PDF
Album
Letter
Published 29 Jul 2025

Electronic and optical properties of chloropicrin adsorbed ZnS nanotubes: first principle analysis

  • Prakash Yadav,
  • Boddepalli SanthiBhushan and
  • Anurag Srivastava

Beilstein J. Nanotechnol. 2025, 16, 1184–1196, doi:10.3762/bjnano.16.87

Graphical Abstract
  • permittivity, n is the refractive index of the materials, and c is the speed of light. The fundamental part of the optical conductivity is related to light absorption, while the imaginary part is associated with the dispersion. Results and Discussion Structural analysis The optimized geometry of the armchair
  • pronounced bandgap narrowing and enhanced visible light absorption. This anisotropic behavior is consistent with theoretical and experimental studies on nanotube systems, where adsorption-induced optical changes are highly dependent on molecular orientation and the local electronic environment [74]. The
  • ) and σ2(ω), reflecting bandgap narrowing. Orientation A shows the most significant redshift (σ1(ω)) peak at ≈630 nm, attributed to mid-gap state formation due to strong charge transfer, enhancing visible light absorption for sensing applications. Orientation B exhibits a smaller redshift (≈410 nm
PDF
Album
Full Research Paper
Published 25 Jul 2025

Towards a quantitative theory for transmission X-ray microscopy

  • James G. McNally,
  • Christoph Pratsch,
  • Stephan Werner,
  • Stefan Rehbein,
  • Andrew Gibbs,
  • Jihao Wang,
  • Thomas Lunkenbein,
  • Peter Guttmann and
  • Gerd Schneider

Beilstein J. Nanotechnol. 2025, 16, 1113–1128, doi:10.3762/bjnano.16.82

Graphical Abstract
  • that the amount of light absorption at any point in the nanosphere is convolved with the point-spread function h(r, z) of the objective. As in both our pc-Mie model and the pc-PWE model, the objective zone plate is also approximated by a lens. Given the radial symmetry of the nanosphere, the inc-BL
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2025

Influence of ion beam current on the structural, optical, and mechanical properties of TiO2 coatings: ion beam-assisted vs conventional electron beam evaporation

  • Agata Obstarczyk and
  • Urszula Wawrzaszek

Beilstein J. Nanotechnol. 2025, 16, 1097–1112, doi:10.3762/bjnano.16.81

Graphical Abstract
  • thin film coatings (Figure 4) and was proven in Figure 6a. The low value of the imaginary part of the refractive index, also known as extinction coefficient (Figure 6b), ranging from 2.12·10−3 to 4.64·10−3, indicates low light absorption in the studied thin films [58]. According to [6], TiO2 films
  • in an increase in the refractive index. In addition, the low values of the extinction coefficient (from 2.12·10−3 to 4.64·10−3) indicated minimal light absorption in the tested films. The results of the nanoindentation studies showed that the hardness of thin films deposited by the conventional EBE
PDF
Album
Full Research Paper
Published 14 Jul 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • in implanted films are ascribed to oxygen vacancies and zinc interstitials, respectively. The film implanted at the highest fluence exhibits the smoothest surface and lowest grain size, which boosts light absorption and lower reflection. The optical bandgap values of ZnO films declined from 3.29 to
PDF
Album
Full Research Paper
Published 11 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • of GO-SG-ZH hydrogel present light absorption in the ultraviolet range (200–400 nm) that was proportional to the colloidal concentrations (50, 40, 30, and 20 ppm). Small absorption peaks at 340 and 360 nm correspond to nanosilica and zinc hydroxide nanoparticles, respectively [21][43]. In addition
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • a narrow bandgap (0.95 eV), high light absorption coefficient (≈105 cm−1), excellent properties in photoelectric conversion, and has enormous potential as an efficient photodetector system and in lithium batteries [1][2]. The prevalent forms of FeS2 are cubic-system pyrite and the orthorhombic
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • applications where natural light is abundant. Although TiO2 has a high photocatalytic activity under UV light, its practical use is limited because of rapid electron–hole recombination and insufficient visible light absorption [65]. Hence, it is critical to develop effective strategies to enhance TiO2 activity
  • or other transition metals through doping can potentially improve Bi2WO6 light absorption capabilities and increase the antibiotic degradation efficiency [98]. Some metal-doped bismuth photocatalysts and their antibiotic degradation efficiency are summarized below in Table 3. Graphitic carbon nitride
  • technique reduces carrier transfer resistance, improves pollutant adsorption, broadens the light absorption range, and promotes carrier separation. During the degradation of tetracycline hydrochloride (TCH), g-C3N4 exhibited remarkable activity under visible light and degraded 84.1% of TCH, while bulk g
PDF
Album
Review
Published 25 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • photothermal conversion and tunability of light absorption of these materials simplify the therapeutic light source, broadening their applicability [17][18]. Furthermore, the customizable nature of these nanomaterials allows for the development of personalized treatment plans, tailored to individual patient
  • , and inorganic semiconductor materials that absorb light through bandgap transitions [25]. The specific photothermal properties of these materials, encompassing aspects such as range and rate of light absorption, photothermal conversion efficiency, heat transfer capability, and photothermal stability
  • , and polypyrrole) with a broad light absorption spectrum and efficient photothermal conversion capabilities (see below in Figure 2e) [58][59][60]. In addition to polymer-based photothermal nanomaterials, organic small molecule dyes that are often used for tissue staining can also be used as
PDF
Album
Review
Published 17 Feb 2025

TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites

  • Marina G. Shelyapina,
  • Rosario Isidro Yocupicio-Gaxiola,
  • Gleb A. Valkovsky and
  • Vitalii Petranovskii

Beilstein J. Nanotechnol. 2025, 16, 128–140, doi:10.3762/bjnano.16.12

Graphical Abstract
  • studied nanocomposites transformed using Equation 6 with n = 2 (since TiO2 is an indirect bandgap semiconductor). Semiconductor materials are characterized by a steep linear increase in light absorption with increasing energy. The bandgap energy can be estimated from the point of intersection of the x
PDF
Album
Full Research Paper
Published 10 Feb 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • deteriorate. Inorganic HTLs proved to perform better. Some examples of inorganic HTLs are CuI, Cu2O, and CuSCN. Organic HTLs consist of polymers or complex molecules, which affect the photovoltaic properties of the device in terms of light absorption and carrier mobility. Some examples of organic materials
PDF
Album
Full Research Paper
Published 06 Feb 2025

Ultrablack color in velvet ant cuticle

  • Vinicius Marques Lopez,
  • Wencke Krings,
  • Juliana Reis Machado,
  • Stanislav Gorb and
  • Rhainer Guillermo-Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1554–1565, doi:10.3762/bjnano.15.122

Graphical Abstract
  • specialized cuticle, characterized by microstructures that effectively minimize reflectance and enhance light absorption. Optical spectrometry confirmed the ultrablack nature of the cuticle, with the measured reflectance approaching minimal levels across a broad spectrum of wavelengths. Therefore, our study
  • setup prolongs the light’s exposure to the melanized integument, thereby augmenting light absorption by the pigment [10]. Consequently, ultrablack colors exhibit an extraordinarily low reflectance across ultraviolet and visible (UV–vis) spectrum wavelengths, often falling below 0.5% of the incident
  • ). The SEM and TEM images of the T. bifurca cuticle reveal that the cuticle sculpturing and setae together with the black pigment may facilitate structural light absorption (Figure 5). The setae in Figure 4, with their grooved nanostructures and hollow interiors, and the stacked lamellae (see L in Figure
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • "super-emission" scales with the system size, meaning larger systems shine brighter. The reverse phenomenon (i.e., superabsorption [35][36]) enhances light absorption for larger systems and holds promise for creating high-performance quantum batteries. However, directly observing superabsorption is
  • conversion of absorbed light into electricity [43]. The carrier diffusion length within PbS CQD solar cells aligns closely with the thickness of the CQD films. This correlation introduces a tradeoff between light absorption and charge transport. As the thickness of the CQD film increases to enhance light
  • absorption, it simultaneously elevates the possibility of carrier recombination. Bae et al. incorporated Ag-coated five SiO2/TiO2 bilayered DBRs in combination with Fabry–Pérot (FP) resonators to address this trade-off and enhance the performance of PbS CQD solar cells. Hence, the light absorption near the
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • spectra (Figure 8) depict the light absorption mainly in the 200–400 nm range for both samples. The MW sample exhibits a higher light absorption and a tendency of main broad band to split at 330 nm. The long absorption tails in the visible domain can be assigned to the presence of surface defects [50
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • and relatively low manufacturing cost [3][4]. These solar cells are based on perovskite-structured compounds, which have demonstrated excellent light absorption, charge-carrier mobilities, and tunable bandgaps [5]. Despite the rapid advancements in PSC technology, some critical issues, such as long
PDF
Album
Full Research Paper
Published 11 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • structure of the catalyst provides a surface that can massively increase light absorption, achieving an efficient C2H6 yield of 210 µmol/cm2 in 6 h with high selectivity under light illumination at room temperature. This research could offer new insights into composite photocatalysts for methane coupling
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Bolometric IR photoresponse based on a 3D micro-nano integrated CNT architecture

  • Yasameen Al-Mafrachi,
  • Sandeep Yadav,
  • Sascha Preu,
  • Jörg J. Schneider and
  • Oktay Yilmazoglu

Beilstein J. Nanotechnol. 2024, 15, 1030–1040, doi:10.3762/bjnano.15.84

Graphical Abstract
  • reduced by more than one order of magnitude. Assuming a similar temperature increase in the CNT walls, the responsivity will increase by an order of magnitude. In addition, the CNT height can be reduced to the effective light absorption depth to achieve a more homogeneous temperature rise over the wall
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • transport [14][15]. At each stage of the photocatalytic process sequence, the intermixing of TMD materials is intended to efficiently enhance light absorption, photogeneration of charge carriers, and activation of the surface redox reaction [16][17]. Furthermore, TMD materials are known to possess favorable
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • NIR/IR region enhances the efficiency of light absorption and scattering, which is a million times more intense than that of conventionally used organic dyes [15]. The NIR/IR wavelengths have the ability to penetrate biological tissues without using invasive modalities for diagnostic or therapeutic
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024
Other Beilstein-Institut Open Science Activities