Search results

Search for "micro/mesoporous" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • considered an ideal supporting material to hybridize with electroactive materials because of its low cost, easy fabrication, large surface area, interconnected porosity and high electrical conductivity [30][31]. Due to its micro/mesoporous 3D morphology with large open pores, it offers more space to grow
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • speciation can be targeted. For example, in the work “New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water”, a hybrid kaolinite nanocomposite was assembled via Zn cations upon calcination, resulting in a low-cost porous
PDF
Editorial
Published 20 Dec 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • noting that the appearance of mesopores after treatment has led to the change of the isotherm shape from type I (typical for microporous solids) to a combination of types I and IV, as is expected for micromesoporous materials [37]. It was suggested that exposure of the ETS-10 framework to H2O2 solution
  • the possible diffusion exchange with the intercrystalline space during the used diffusion time (20 ms). It is worth mentioning that in both catalysts, microporous Na,K-ETS-10 and micromesoporous P-ETS-10/60, the amount of triolein was below the detection limit. While for the microporous
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • ) have been prepared under classical ionothermal conditions from single dicyano-aryl or heteroaryl systems. The as-prepared samples are highly micro-mesoporous and thermally stable materials featuring high specific surface area (up to 1860 m2·g−1) and N content (up to 29.1 wt %). All these features make
  • isotherm profiles typical of bimodal micro-mesoporous materials with complex and ill-defined pore networks (see Supporting Information File 1, Figures S2A,A′ and S2B,B′). As found for related CTF samples previously synthesized by us under similar reaction conditions [30], CTF2 presents a type-IV isotherm
  • –28) appears somewhat reduced. Anyhow, the relatively high SSA and N content of CTF1 together with its micro-mesoporous morphology (see Table 1, entry 1) keep it among the samples with the highest CO2 uptake values claimed so far for this class of materials. To better specify the binding affinity
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • Science), Theodor-Körner-Allee 16, 02763 Zittau, Germany Department of Earth and Environmental Science, University of Potsdam, 14476 Potsdam, Germany 10.3762/bjnano.10.11 Abstract A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination
  • ; micro/mesoporous; nanocomposite; water remediation; Introduction Porous carbon-based materials and carbon/inorganic hybrid materials have extensively been used for the adsorption of pollutants, such as heavy metals or aromatic hydrocarbons, from water in developing countries [1][2][3][4]. The removal
  • materials synthesis procedure. The current study describes the synthesis of a new porous nanocomposite material. Unlike earlier versions of these materials prepared with alkali activation [1][22], the resulting micro/mesoporous carbon–clay nanocomposite in this study shows a high efficiency for the removal
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • , and larger surface-to-volume ratio [34]. The large surface-area-to-volume ratio of nanofibers (NFs), hollow nanofibers (HNFs), nanotubes (NTs) and nanowires (NWs) with micro/mesoporous surfaces results in improved adsorption and better reaction kinetics of gas-sensitive materials. Nanofibers can be
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • been carried out on nanostructured carbon hosts for sulfur storage including carbon fibers [13][14], carbon nanotubes [15][16], graphene/graphene oxide [17][18][19] as well as micro-/mesoporous carbons [20][21][22]. Among the porous carbons, especially hollow carbon spheres (HCS) have attracted
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016
Other Beilstein-Institut Open Science Activities