Search results

Search for "microstructures" in Full Text gives 133 result(s) in Beilstein Journal of Nanotechnology.

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • Andrey L. Pankratov Anna V. Gordeeva Leonid S. Revin Dmitry A. Ladeynov Anton A. Yablokov Leonid S. Kuzmin Nizhny Novgorod State Technical University n.a. R.E. Alekseev, GSP-41, Nizhny Novgorod, 603950, Russia Institute for Physics of Microstructures of RAS, GSP-105, Nizhny Novgorod, 603950
PDF
Album
Full Research Paper
Published 04 Jul 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • Egor I. Glushkov Alexander V. Chiginev Leonid S. Kuzmin Leonid S. Revin Institute for Physics of Microstructures of RAS, GSP-105, Nizhny Novgorod, 603950, Russia Nizhny Novgorod State Technical University n.a. R. E. Alekseev, GSP-41, Nizhny Novgorod, 603950, Russia Chalmers University of
PDF
Album
Full Research Paper
Published 28 Mar 2022

A photonic crystal material for the online detection of nonpolar hydrocarbon vapors

  • Evgenii S. Bolshakov,
  • Aleksander V. Ivanov,
  • Andrei A. Kozlov,
  • Anton S. Aksenov,
  • Elena V. Isanbaeva,
  • Sergei E. Kushnir,
  • Aleksei D. Yapryntsev,
  • Aleksander E. Baranchikov and
  • Yury A. Zolotov

Beilstein J. Nanotechnol. 2022, 13, 127–136, doi:10.3762/bjnano.13.9

Graphical Abstract
  • , Belgium/US). Instruments The average hydrodynamic radius of the PS particles has been determined by using the DLS method on a “Zetasizer Nano ZS” (Malvern Panalytical Ltd, UK) device. Microstructures of sensor matrices have been tested by using the SEM method on an “NVision 40” (Carl Zeiss, Inc., Germany
PDF
Album
Full Research Paper
Published 25 Jan 2022

Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae)

  • Venkata A. Surapaneni,
  • Tobias Aust,
  • Thomas Speck and
  • Marc Thielen

Beilstein J. Nanotechnol. 2021, 12, 1326–1338, doi:10.3762/bjnano.12.98

Graphical Abstract
  • changes Figure 1 shows S. calyptrata leaves at their different ontogenetic stages (Figure 1a) and the corresponding confocal laser scanning microscopy (CLSM) observations (Figure 1b–f) on leaf microstructures. A schematic representation of the leaves and the corresponding locations of smooth and ridged
  • underlying structure of the cuticle–cell wall interface. A better understanding of these processes might also provide insights for bioinspired growth or swelling-induced microstructures for technical applications [44]. The morphological changes in the cuticular structure of plant leaves during ontogeny have
  • respective surface microstructures. At stages 1 and 2, leaves are normally in the rolled position. The schematics show the leaf colors when the leaves were unrolled manually. The plots show (a) the variation in the arithmetic average roughness (Ra) of the leaf surfaces with different growth stages, (b) the
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • Leonid S. Revin Dmitriy V. Masterov Alexey E. Parafin Sergey A. Pavlov Andrey L. Pankratov Institute for Physics of Microstructures of RAS, GSP-105, Nizhny Novgorod, 603950, Russia Center of Quantum Technologies, Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia Lobachevsky State
PDF
Album
Full Research Paper
Published 23 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • general case cannot be deduced considering the underlying complex microstructures of isotropic surfaces, the approximate expressions for some limiting cases with simplified physics still gained much attention due to their acceptable accuracy and relatively low computational cost [93]. Of those, some
  • superhydrophobic microstructures, and it is found to increase with the increase of the square root of the Reynolds number in the limit of high Re [121]. 3.2 Nanofiltration As shown in Figure 10, electro-osmosis can play an important role in the area of nanofiltration, where membrane fouling is the main drawback
PDF
Album
Review
Published 17 Nov 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • of the skin, the stratum corneum (SC), was first introduced in 1976 [1]. However, the lack of microfabrication technologies delayed the experimental research of the concept until the 1990s when developments in microfabrication tools facilitated the manufacturing of microstructures and
  • microelectromechanical systems (MEMS) and provided a platform for microfabrication of compact miniaturized medical devices for human health screening, monitoring, and diagnostic purposes. Microneedles are microstructures that are sharp and robust enough for skin penetration, made using MEMS technology. The application
  • micromoulding [5]. In addition to microneedles for skin penetration, these microstructures have also been used in other sites of the body including the delivery of bioactive drugs into the eyes [6] and the insertion of molecules into cells using nanoneedles [7][8]. The present article reviews applications
PDF
Album
Review
Published 13 Sep 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • ]. Therefore, the design of ordered graphene composites and the development of optimized microstructures is a major issue to study. In 2013, Kim et al. synthesized metal–graphene nanolayered (MGNL) composites consisting of alternating metal (copper or nickel) layers and graphene monolayers [22]. Since then, a
PDF
Album
Full Research Paper
Published 12 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • same time, a change of the magnetic field gradient and direction can be used to accurately guide magnetic microstructures. However, these structures often have some shortcomings and limitations. Different magnetic drive structures show different characteristics. Research is needed to continuously
  • magnetized conical tubes or ring-like microstructures. The structure with sharp tip could also penetrate the cumulus layer surrounding the oocyte. At the same time, it was also necessary to apply a higher magnetic field gradient to guide the magnetic structure with superparamagnetic beads. Artificial
PDF
Album
Review
Published 19 Jul 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • the convergent presence of the primary types of attachment structures, but additionally reveal functional micro- and nanostructures on the adhesive devices of many groups [133]. Smooth attachment pads are not always absolutely smooth. Mostly they bear surface microstructures with certain functions
  • conditions [133][158][160][162]. Similar attachment microstructures (AMS) are found, in a convergent manner, in different polyneopteran groups, in species with a similar ecology [108][109][133][161][163]. In general, due to the lack of broad comparative studies on many taxa with smooth pads, the distribution
  • ], all attachment pads of Phasmatodea are smooth; however, they are covered with functional surface microstructures. Although the arolia are rather uniform in their morphology, their surface microstructure reflects the basal sister-group relationship of Timema and Euphasmatodea (all remaining Phasmatodea
PDF
Album
Review
Published 15 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • number of publications on HIM imaging of kidneys were published. Paunescu et al. focused on the microstructures of the kidney glomerulus as well as on the brush border microvilli of the proximal convoluted tubules [72]. On the latter they found “micropits on the microvillar surface as well as thin
PDF
Album
Review
Published 04 Jan 2021

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • pristine Au were used to compare the patterning of thin films with different microstructures. We show that the height of Pt60Pd40 thin films deposited onto poly(methyl methacrylate) and polycarbonate substrates can be patterned by He+ ion beams with ultrahigh precision (nanometers) while preserving in
  • wrinkle-like micropatterns [23][24]. In this work, we have employed thin films of a Pt60Pd40 alloy and of pristine Au. The primary reason for this choice was the difference in their microstructures, specifically in the availability of structural defects capable of providing the release of gases from
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • /nanopore; nano/microstructures; SERS substrate; Introduction Surface-enhanced Raman spectroscopy (SERS) can be used to detect biomolecules [1][2][3], explosives [4][5][6], and pesticide residues [7][8][9]. Plasmonic metal nanostructures are often used as SERS substrates to increase the molecule-specific
  • quantification of the Raman intensity of probe molecules. Raman intensity after different treatment times Figure 5 shows the Raman spectra of R6G molecules (10−7 mol·L−1) on nanopore structures that were fabricated using PEO different treatment times. The microstructures vary in their morphology depending to the
PDF
Album
Full Research Paper
Published 16 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • different morphologies and sizes. For example, the technique has been used to obtain ultrafine MgO nanoparticles (8–10 nm) [50], TiO2 nanoparticles (10–20 nm) [51], and even flower-like microstructures (diameter ≈6 µm) and microtubes (diameter ≈1 µm and length ≈4 µm) [52]. The sol–gel technique has been
PDF
Album
Review
Published 25 Sep 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • antireflection abilities [13][14][15]. These composite microstructures have also shown to maximize the path of the Raman excitation laser beam within the substrate, leading to signals with higher intensity. Samransuksamer et al. [16] used TiO2 nanorods decorated with Au NPs, deposited via precipitation by
PDF
Album
Full Research Paper
Published 14 Jul 2020

Microwave photon detection by an Al Josephson junction

  • Leonid S. Revin,
  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Anton A. Yablokov,
  • Igor V. Rakut,
  • Victor O. Zbrozhek and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2020, 11, 960–965, doi:10.3762/bjnano.11.80

Graphical Abstract
  • Leonid S. Revin Andrey L. Pankratov Anna V. Gordeeva Anton A. Yablokov Igor V. Rakut Victor O. Zbrozhek Leonid S. Kuzmin Institute for Physics of Microstructures of RAS, GSP-105, Nizhny Novgorod, 603950, Russia Center of Cryogenic Nanoelectronics, Nizhny Novgorod State Technical University, Nizhny
PDF
Album
Full Research Paper
Published 23 Jun 2020

A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer

  • Pavel M. Marychev and
  • Denis Yu. Vodolazov

Beilstein J. Nanotechnol. 2020, 11, 858–865, doi:10.3762/bjnano.11.71

Graphical Abstract
  • Pavel M. Marychev Denis Yu. Vodolazov Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia 10.3762/bjnano.11.71 Abstract We calculate the current–phase relation (CPR) of a SN-S-SN Josephson junction based on a SN bilayer of variable thickness
PDF
Album
Full Research Paper
Published 02 Jun 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • nm from soy milk also at 180 °C. Laser ablation in liquid (LAL) has been used to produce nanomaterials with special morphologies, microstructures, and phases and with various functionalized nanostructures [23][24][25]. For example, carbon-based nanoparticles with fewer side-products have been
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • the precursor on the templating process and the final porosity, in relation to the formation of sp2-hybridized microstructures. Results and Discussion Characterization of the pore system This study is focused on four different hard-templated carbon monoliths based on pitch or resin as carbon precursor
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • , Philips). The nanocomposite microstructures were examined at a cryofractured surface in liquid nitrogen, and then coated with a thin layer of gold. XRD analyses (X’Pert PRO, Philips) were performed to determine the overall phase and crystalline structure of the samples. The XRD patterns were recorded at 5
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • and a molecular dynamics model for the nanoparticle. The results showed that the predicted changes in the nonclassical model are less than in the classical model [26]. The experimental studies indicate that size-dependent behavior plays a major role in nano/microstructures where the classical
PDF
Album
Full Research Paper
Published 13 Jan 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • surfaces of shark skin and bird feathers can be imitated and then applied to pipeline surfaces to reduce the viscous drag [23][24]. This provides a novel method to save energy in pipeline transportation. In the last decades, utilization of bionic microstructures to reduce the drag of turbulent flow has
  • microstructure, it can be divided into streamwise grooves and transverse grooves. With the development of numerical simulations and experimental techniques, the influence of microstructures on turbulent flow characteristics can be investigated accurately. Its drag reduction mechanism is owed to the two aspects
  • the above analysis, most of the previous studies focused on external flow with bionic microstructures. However, there are few studies on the internal flow of pipelines with transverse microgrooves [35]. Therefore, it is necessary to evaluate the drag reduction performance of transverse microgrooves
PDF
Album
Full Research Paper
Published 03 Jan 2020
Other Beilstein-Institut Open Science Activities