Search results

Search for "monolayers" in Full Text gives 316 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Enhanced inhibition of influenza virus infection by peptide–noble-metal nanoparticle conjugates

  • Zaid K. Alghrair,
  • David G. Fernig and
  • Bahram Ebrahimi

Beilstein J. Nanotechnol. 2019, 10, 1038–1047, doi:10.3762/bjnano.10.104

Graphical Abstract
  • in 6-well plates (STARLAB international, Hamburg, Germany), 106 cells/well) for two days. At confluence, monolayers of MDCK cells were then infected with a serial dilution of influenza virus inoculum (sufficient to obtain approximately 100 plaques per well) for 1 h at 37 °C on a rocking platform. An
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • size and the ratio of Au atoms to ligands of AuNCs. X-ray photoelectron spectroscopy (XPS) has also been applied to observe the molecular dependence on the gold and sulfur chemical state of organosulfur monolayers of the fractions. The photoluminescence spectra of these AuNCs in the range of 900–790 nm
  • protective layer of organic molecules [2]. These clusters are considered to be a hybrid system of small molecules and macroscopic materials, and are of great interest to the properties of gold core and organic monolayers [3]. The stable monolayer-protected NCs have enabled experiments to be carried out that
PDF
Album
Full Research Paper
Published 25 Apr 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • statistically significant increase over time (Figure 7A). After NP exposure ([24.9 µg/mL] PCL-NPs or [160.3 µg/mL] Au-NPs for 24 h) and DMSO stimulation on DIV2, no changes were observed in PCL-NP-treated cell monolayers. However, as expected, DMSO stimulation resulted in a strong decrease of TEER on DIV3 as
  • Figure 7B and Figure 7C. Furthermore, no difference between PCL- and Au-NP-exposed cell monolayers was detected. Overall, cell monolayers are less permeable to 70 kDa FITC dextran (Figure 7C) than to 4.4 kDa TRITC dextran (Figure 7B). Discussion A concentration- and time-dependent effect of exposure to
PDF
Album
Full Research Paper
Published 25 Apr 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • 1007 cm−1 is 9.66, 9.79 and 7.17 for 532, 633 and 785 nm excitation respectively. The spread of the intensity ratio of the peak at 1086 cm−1 relative to the other peaks is also very similar for all excitation wavelengths. In the case of monolayers of pMA in sample C, large changes in the shape of the
  • , respectively. The acquisition time and the number of acquisitions for all excitation wavelengths were set to 10 s and 5 s, respectively. For SERS measurements, the pMA monolayers were deposited on the fabricated silver nanoislands. For this purpose, samples with deposited SNIFs were placed in Petri dishes and
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • Technology (KAIST), Yuseong-gu, Daejeon 305-701, Korea Physics/Department of Natural Sciences, Åbo Akademi University, Porthansgatan 3, 20500 Turku, Finland 10.3762/bjnano.10.82 Abstract Using density functional theory, we study the electronic properties of several halide monolayers. We show that their
  • theory; electronic properties; halide monolayers; Introduction The discovery of graphene [1] by exfoliation [2] opened a new era in several domains of science. Graphene has attracted great attention due to its unique properties [3] and because it offers many advantages in comparison with more common
  • ] was used. Similar parameters were employed for hybrid Heyd–Scuseria–Ernzerhof (HSE) calculations [38], that were performed to obtain accurate values for the bandgap. Sufficient spacing (more than 17 Å) was put between the monolayers to avoid significant interactions between the periodically repeated
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • batteries has been demonstrated as an effective way to overcome the shuttle effect and enhance the cycling stability. In this work, the anchoring effects of 2H-MoS2 and 1T'-MoS2 monolayers for Li–S batteries were investigated by using density functional theory calculations. It was found that the binding
  • understood. In this study, we systematically investigated the adsorption of LPSs on 2H-MoS2 and 1T'-MoS2 monolayers with DFT calculation. Our results show that the 1T'-MoS2 monolayer interacts strongly with Li2Sx, which will hinder the shuttle effect. Taking into account the better conductivity, 1T'-MoS2
  • monolayers can be used as a conductive anchoring material to design advanced Li–S batteries. Results and Discussion Both 2H-MoS2 and 1T'-MoS2 monolayers exhibit a structure with three atomic layers, in which the Mo atomic layer is sandwiched by two S atomic layers. The 6 × 6 supercells for 2H-MoS2 and 1T
PDF
Album
Full Research Paper
Published 26 Mar 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • temperature and thickness were reported in [26]. 4-MPBA was chosen as a SERS test molecule because of the strong affinity between the thiol group and metal surfaces (Ag or Au) as well as because of the easy formation of self-assembled monolayers (SAMs) [27]. Furthermore, the benzene ring is orientation
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr)

  • Miguel A. Andrés,
  • Clemence Sicard,
  • Christian Serre,
  • Olivier Roubeau and
  • Ignacio Gascón

Beilstein J. Nanotechnol. 2019, 10, 654–665, doi:10.3762/bjnano.10.65

Graphical Abstract
  • , which is especially interesting for the development of MOF-based devices that require the use of very small MOF quantities. In some recent studies, we have reported the fabrication at the air–water interface of dense monolayers of nanoparticles of MIL-101(Cr) and MIL-96(Al) MOFs that can be transferred
  • investigate the structure of the hydrophobic films obtained, pure ODP LB films and mixed MOF/ODP LB films transferred onto mica were analyzed by AFM (Figure 5). The study of pure ODP monolayers showed that the films present some defects and pinholes, which allow a monolayer thickness between 2 and 3 nm to be
  • determined. This value is in good agreement with the thickness previously reported for ODP monolayers deposited onto silver or gold substrates [33] and reveals that molecules in the film adopt an almost vertical position. Moreover, some domains of different sizes and heights up to 25 nm can be observed
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • , Belgium 10.3762/bjnano.10.58 Abstract Here we describe the development of chemoresistive sensors employing oxygen-plasma-treated, Au-decorated multiwall carbon nanotubes (MWCNTs) functionalized with self-assembled monolayers (SAMs) of thiols. For the first time, the effects of the length of the carbon
  • approach, carbon nanotubes act as support and charge transport transducing elements while the recognition function is performed by grafted molecules. Two examples of this have consisted of obtaining thiol-functionalized carbon nanotube buckypapers [27] or self-assembled monolayers (SAMs) of thiol molecules
  • monolayers: 3-mercaptopropanoic acid (C3H6O2S) and 16-mercaptohexadecanoic acid (C16H32O2S) as hydrophilic molecules, and 1-propanethiol (C3H8S) and 1-hexadecanethiol (C16H34S) as more hydrophobic molecules. Additionally, control sensors were produced, which integrated bare Au-decorated MWCNTs, in order to
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • temperature continues to increase even at the beginning of section III (see Figure 2e). Conclusion In conclusion, we have successfully grown MoS2 monolayers on both sides of the c-plane of double polished sapphire substrates using CVD. The monolayers on both sides of the substrate were homogeneously
  • distributed over the 10 × 10 mm substrate surfaces. Most importantly, the evolution of the optical transmittance of the substrate has been monitored in situ in real time during the CVD growth using DTS. The formation of the MoS2 monolayers is clearly visible from the development of the DT spectrum. More
  • specifically, the onset of the growth and the variation of the growth rate of MoS2 monolayers can be determined. This detailed information about the growth deduced from the DTS results can be correlated very well to the variation of the temperature of the substrate, the MoO3, and the sulfur sources. The
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering

  • Yarong Su,
  • Yuanzhen Shi,
  • Ping Wang,
  • Jinglei Du,
  • Markus B. Raschke and
  • Lin Pang

Beilstein J. Nanotechnol. 2019, 10, 549–556, doi:10.3762/bjnano.10.56

Graphical Abstract
  • Raman active modes of benzenethiol on different substrates and when limited to within a fraction of the localized surface plasmon bandwidth. Representative Raman spectra of self-assembled monolayers of benzenethiol acquired on four different metal substrates, in comparison to neat benzenethiol are
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • catalyst for further investigation of CO2 conversion due to its high selectivity and activation for CO2. The study shows that Mo-doped BN monolayers can be used as a promising catalyst for CO2 reduction to CH4 with a low limiting potential of −0.45 V. More importantly, Mo is an abundant element in the
  • earth, thus using Mo-doped BN monolayers as an electrocatalyst for CO2 conversion can significantly reduce the cost compared with conventional noble-metal catalysts, such Au, Ag, Pt, Pd and so on [30][33][48][49]. This work provides insight and guidance to experimentalists in search of low cost, high
  • onto BN monolayers (TM-doped BN) as the SACs, the interaction between CO2 and various TM (Sc to Zn, Mo, Ru, Rh, Pd and Ag) doped BN monolayers were considered. Moreover, for efficient reduction of CO2, the interaction between CO2 and the catalyst should be stronger than that between H2O and the
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • versatile and convenient tool for modifying the material structure through a controlled induction of lattice defects, cutting or atom implantation [1][2][3]. This method is useful for engineering of the optical, electric and catalytic properties of monolayers [1][2][3]. For technical simplicity, ion
  • , initially recognized due to its catalytic effect in the CVD synthesis of graphene. SiO2, the most common material for supporting monolayers (usually in the SiO2/Si alignment), is in turn a typical dielectric, mostly referred to as introducing a comparatively small effect on the properties of 2D materials
  • . For the uniformity of the study, a classical semiconducting material SiC was added as another commonly used substrate. Al2O3 is also an insulator that is becoming a more interesting material to support monolayers given that is has a small effect on their properties; besides, comparing it to SiO2 is
PDF
Album
Full Research Paper
Published 22 Feb 2019

One-step nonhydrolytic sol–gel synthesis of mesoporous TiO2 phosphonate hybrid materials

  • Yanhui Wang,
  • P. Hubert Mutin and
  • Johan G. Alauzun

Beilstein J. Nanotechnol. 2019, 10, 356–362, doi:10.3762/bjnano.10.35

Graphical Abstract
  • diameter of the crystallites (assuming a spherical shape and a density of 3.8), increases with the P/Ti ratio from 1.5 P/nm2 for TiP0.02 to 2.9 P/nm2 for TiP0.1. These values suggest the formation of monolayers with low to moderate density (grafting densities of up to 4 to 5 P/nm2 have been reported for
  • well-ordered self-assembled monolayers). The mesoporosity of the hybrid materials with P/Ti ratios up to 0.1 stems from the aggregation of the grafted nanoparticles (interparticle porosity). The smaller the size of the particles, the higher the specific surface area and the lower the pore volume
PDF
Album
Full Research Paper
Published 05 Feb 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • fully penetrate the monolayer. The latter problem could be solved by creating colloidal monolayers with a larger spacing, for example by optimizing the surface chemistry of particles. The mechanism of generating grip on the tested substrates is likely indentation-based, creating mechanical interlocking
  • monolayers on glass using dip coating: Colloidal monolayers from sub-microscale and microscale particles were obtained by deposition of particles on an untreated microscopic slide of glass (75 × 26 mm2) (Corning®) using a dip coating process [45]. Specifically, a Langmuir–Blodgett trough (KSV Nima KN2002
  • uncured PDMS of 1:10 and 1:20 crosslinker/pre-polymer weight ratios in a desiccator. Uncured PDMS was cast on a 14 × 14 mm2 area of an untreated microscopic glass to obtain a layer of 4 mm thickness, and subsequently cured in an oven for 2 h at 68 °C. Characterization of micropatterns Monolayers and
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • would be useful in understanding the mechanisms of such interactions. Nowadays, a variety of methods are used to prepare graphene. Mechanical exfoliation of graphite facilitates obtaining micrometer-scale graphene layers on amorphous substrates such as silicon oxide [1]. Graphene monolayers have been
PDF
Album
Full Research Paper
Published 28 Nov 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • . Finally, a spatial resolution of ≈5 nm is shown on TERS maps of rhodamine 6G (R6G) sub-monolayers absorbed onto gold monocrystals. Experimental Gold wires (125 μm diameter, Advent AU517311, high purity 99.99%, temper hard) are etched in a 10 mL solution 1:1 v/v of fuming hydrochloric acid (>37 wt %) and
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • band gaps range from millielectronvolts to a few electronvolts. They can also be stacked in van der Waals heterostructures [22][24][25] favoring miniaturization and device integration. Incorporation of dopants affects the properties of isolated or stacked monolayers [26][27], as they do in bulk systems
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • approaches have been explored to actively control these plasmonic properties without changing the topographic features of the nanoparticles themselves. Liquid crystals [5], thermosensitive polymers [6], transition metal dichalcogenides [7] and graphene [8] monolayers have been used for this purpose. The
PDF
Album
Full Research Paper
Published 08 Oct 2018

Nanoantenna structures for the detection of phonons in nanocrystals

  • Alexander G. Milekhin,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Alexander V. Latyshev,
  • Volodymyr M. Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2018, 9, 2646–2656, doi:10.3762/bjnano.9.246

Graphical Abstract
  • of organic and inorganic materials deposited onto the arrays to be analyzed. The Langmuir–Blodgett technology was used for homogeneous deposition of CdSe, CdS, and PbS NC monolayers on the antenna arrays. The structural parameters of the arrays were confirmed by scanning electron microscopy. 3D full
  • ], nanorings [28], and nanoslits [29]. A detailed description of various nanoantenna geometries can be found in the comprehensive review [30]. In this paper, we report on a systematic study of the effect of SEIRA by the phonon response from monolayers of CdSe, CdS, and PbS NCs deposited on periodic arrays of
  • region. The monolayers (MLs) of CdS and PbS NCs fabricated and MLs of commercially available colloidal CdSe NCs were homogeneously deposited on the prepared plasmonic substrates using the Langmuir–Blodgett (LB) technique as described earlier [23][33][34][35]. The size, shape, and areal density of NCs, as
PDF
Album
Full Research Paper
Published 05 Oct 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • valid [6][7][27]. This is evidenced by lower sensor sensitivity to changes in concentrations of Cd(NO3)2: the saturation occurs by filling all possible free bonds at low concentrations (which leads to the formation of monolayers; as a result, subsequent layers are not formed due to weak bonds. Figure 5d
PDF
Album
Full Research Paper
Published 11 Sep 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • experiment that usn-Si can experience a considerable energy offset of electronic states by embedding it in silicon dioxide (SiO2) or silicon nitride (Si3N4), whereby a few monolayers (MLs) of SiO2 or Si3N4 are enough to achieve these offsets. Our findings present an alternative to conventional impurity
  • ) approach. Following an explanation of the theoretical and experimental methods used, we turn to results for Si-NCs obtained from h-DFT. Here, we focus on the electronic structure of Si-NCs as a function of the embedding dielectric and its thickness of up to 3 monolayers (MLs). The latter dependence
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications

  • Mykola Borzenkov,
  • Maria Moros,
  • Claudia Tortiglione,
  • Serena Bertoldi,
  • Nicola Contessi,
  • Silvia Faré,
  • Angelo Taglietti,
  • Agnese D’Agostino,
  • Piersandro Pallavicini,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2018, 9, 2040–2048, doi:10.3762/bjnano.9.193

Graphical Abstract
  • decoration) have received particular attention [6][7]. Previously, it was shown that these GNSs are highly photothermally active under NIR irradiation in aqueous solution in the form of monolayers grafted on dry glass surfaces and when inkjet-printed on flexible substrates, demonstrating the ability to reach
  • materials that can coat surfaces and are capable of eradicating biofilms with remote physical activation. Even though gold nanoparticles are not intrinsically antibacterial, the thermal relaxation upon NIR light activation can be a major force of antibacterial action as it was shown for monolayers of GNSs
  • on glass slides [8]. In this case, the efficient photothermal response of the monolayers resulted in a local hyperthermia effect that was capable of killing bacteria in Staphylococcus aureus biofilms [8]. Therefore, the motivation of the present work lies on the assumption that the incorporation of
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • direct approach to improve the catalytic activity for the hydrogen evolution reaction (HER) on the basal plane of the SnSe2(1−x)S2x monolayer. SnSeS and SnSe0.5S1.5 monolayers showed the best catalytic activity for HER at a tensile strain of 10%. This work provides a design for improved catalytic
  • knowledge, theoretical studies related to the system of 2D SnSe2(1−x)S2x alloys as catalysts for HER have been reported rarely. Tuning the electronic properties and catalytic behaviour of SnSe2(1−x)S2x monolayers for HER by strain engineering is required for their application in the energy conversion field
  • . In this work, the electronic properties and catalytic behaviour for HER of SnSe2(1−x)S2x (x = 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.750, 0.875 and 1.0) monolayers were investigated by density functional theory (DFT). It was shown that band gap and catalytic activity of these alloys can be continuously
PDF
Album
Full Research Paper
Published 18 Jun 2018

Increasing the performance of a superconducting spin valve using a Heusler alloy

  • Andrey A. Kamashev,
  • Aidar A. Validov,
  • Joachim Schumann,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2018, 9, 1764–1769, doi:10.3762/bjnano.9.167

Graphical Abstract
  • certain thicknesses of the F2 layer an inverse SSV effect ΔTc < 0 [26]. The most remarkable result of the present study is the magnitude of the direct SSV effect, which reaches for dHA = 1 nm (about two monolayers of HA) the maximum value of 80 mK (triangles in Figure 2). This surpasses the result for the
PDF
Album
Supp Info
Letter
Published 12 Jun 2018
Other Beilstein-Institut Open Science Activities