Search results

Search for "nanorods" in Full Text gives 205 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • Julian Kalb Vanessa Knittel Lukas Schmidt-Mende Department of Physics, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany 10.3762/bjnano.10.40 Abstract In this article, we demonstrate the position-controlled hydrothermal growth of rutile TiO2 nanorods using a new scanning
  • nanocrystals and provide the growth of rutile TiO2 nanorods in well-defined areas. Due to the small tip radius, the resolution of this method is excellent and the method is quite inexpensive compared to electron-beam lithography and similar methods providing a position-controlled growth of semiconducting TiO2
  • hydrothermally grown rutile TiO2 nanorods [36]. Beside the homogeneous growth on macroscopic areas, we indicated how to trigger the growth via conventional electron-beam lithography locally. In this report, we apply an advanced but inexpensive scanning probe lithography technique to draw thin lines of nanorods
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • morphological structures such as nanorods [5][6][7], nanowires [8], tetrapods [9], nanodisks [10], nanotubes [11], flowers [12], and nanocrystals [13], have been reported. Among the many nanostructured morphologies possible for ZnO, self-assembled ZnO nanocrystals (NCs) have been attracting great attention due
PDF
Album
Full Research Paper
Published 24 Jan 2019

Sputtering of silicon nanopowders by an argon cluster ion beam

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Zhenguo Wang,
  • Wenbin Zuo,
  • Sergey Belykh,
  • Alexander Tolstogouzov,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2019, 10, 135–143, doi:10.3762/bjnano.10.13

Graphical Abstract
  • [22]. Sputtering experiments have been performed mostly for gold nanoparticles and nanorods. Klimmer et al. [23] have studied the sputtering of gold nanoparticles with a radius of 3.6 nm on a sapphire substrate irradiated with 200 keV Ar ions. Their model predicts a strong size effect of the
PDF
Album
Full Research Paper
Published 10 Jan 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • nanoparticle comprised of CdSe/ZnS QDs and gold nanorods (GNRs) where the GNRs were applied to enhance the photoluminescence (PL) of the CdSe/ZnS QDs. In particular, we have obtained the scattering PL spectrum of a single CdSe/ZnS QD and GNR@CdSe/ZnS nanoparticle and comparison results show that the CdSe/ZnS
  • as an optical process for MCF-7 breast cancer cells. Keywords: bioimaging; gold nanorods; photoluminescence enhancement; quantum dots; Introduction In the past decades, quantum dots (QDs) have proven to be increasingly useful for their unique features [1][2][3][4][5]. The light emission from QDs
  • metal materials play a role in the enhancement of fluorescence in QDs, especially gold nanorods (GNRs) and Cu or Ca+ ion binding of QDs [16][17][18][19]. GNRs possess two plasmonic resonance bands – a longitudinal band and a transverse band. These bands correspond to the electron oscillations along the
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • light [23]. Alternatively, the antitumor activity of porphyrinic PCN-224 was increased by combining photodynamic and photothermal effects with chemotherapy; in this case the MOF was deposited onto gold nanorods and impregnated with a chemotherapeutic agent [24]. Strong phototoxic effects were reported
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • such as the fabrication of electrodes, etch masks, nanorods, 3-dimensional, plasmonic and superconducting nanostructures [51][52] not all of which require the highest achievable resolution. In this section we present a brief review of sub-10 nm FEBIP, focusing on the possibilities for patterning
  • combined with CVD. As another example, 5 nm GaN quantum dots were deposited by Crozier [86] by EBID from a specially tailored precursor resulting in high-quality uniform deposits on a thin film of Si/SiO2. Shimojo [87] demonstrated the deposition of self-standing nanorods, 10 nm in diameter, by electrons
  • in the presence of a chloride-containing precursor. Remarkably, the nanorods do not contain the precursor material but are instead formed from the substrate material. 2.2.2.2 Electron beam induced etching. Focused electron beam induced etching is another direct-write technique used for high
PDF
Album
Review
Published 14 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • . Chen and co-workers [45] demonstrated that a SnO2–rGO sensor, which was synthesized via growing SnO2 nanorods on a GO surface, showed a response of 1.3 to 200 ppm NH3 with instant response/recovery times of only 8 s/13 s at room temperature. The rapid response and particularly the ultra-fast recovery
  • that the response can be significantly improved. ZnO is widely used as a typical wide-bandgap (3.37 eV) metal-oxide gas sensor material. However, the problem with ZnO gas sensors is their poor selectivity [66]. Li et al. [67] synthesized urchin-like ZnO nanorods–graphene via a facile solvothermal
  • active sites. Meng and co-workers [81] published an inspiring study, where they develop a microwave-assisted hydrothermal technique to grow CuO rods in GO suspension using cetyltrimethylammonium bromide (CTAB) as a soft template. The Cu2O nanorods–rGO hybrids obtained after annealing showed a porous
PDF
Album
Review
Published 09 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • ][55][56], and nanotransfer printing, which was used to build stacks of gold nanorods or nanowires [4]. The production of nanoporous metal films or particles through a dealloying process also emerged as an effective tool for the facile formation of a large number of SERS-active hot spots [57][58][59
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • XRD results revealed the morphology and a phase transition from cubic to hexagonal NaYF4. Photoluminescence spectra indicated that the hexagonal NaYF4:Yb3+/Er3+ nanorods convert near-infrared light of 980 nm to the visible light with wavelength peaks at 654, 541 and 522 nm. Hence, the upconverting
  • exhibited an 25% improved short-circuit current and an appreciable improvement of the near-infrared response of the external quantum efficiency. Moreover, because the size of the nanorods is comparable to the wavelength of visible light, the rods effectively scattered light, thus enhancing the visible light
  • UC effect; however, it does not imitate the actual solar irradiation in practical devices. In the present work, the upconverting NaYF4:Yb3+/Er3+ nanorods were synthesized thorugh a hydrothermal method and their UC effect on NIR light harvesting in a-Si:H solar cell was scrutinized by using a facile
PDF
Album
Full Research Paper
Published 31 Oct 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • , Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden 10.3762/bjnano.9.255 Abstract Zinc oxide (ZnO) nanorods (NRs) oriented along the crystallographic [001] axis are grown by the hydrothermal method on glass
  • nanorods; Q-switching; saturable absorption; solid-state lasers; zinc oxide; Introduction Zinc oxide (ZnO) is a well-known II–IV group wide-bandgap semiconductor (Eg = 3.37 eV), possessing a hexagonal wurtzite-type (sp. gr. P63mc) structure with unit cell parameters a = 3.25 Å, c = 5.20 Å. In recent years
  • , a lot of attention has been paid to the studies of ZnO nanostructures of various shapes, including oriented nanorods (NRs), nanowires, nanobelts, nanoparticles, etc. for versatile photonic applications [1][2]. ZnO NRs are especially attractive for short-wavelength nano-devices due to their high
PDF
Album
Full Research Paper
Published 23 Oct 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • tips are TERS-active, while 50% of the tips have a radius of curvature smaller than 35 nm. Light emission from the tip apex Tightly coupled plasmonic metals, such as nanorods dimers [51], nanocubes on surfaces [52], or TERS tips in contact with surfaces [53][54], emit light over a broad continuum, even
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Silencing the second harmonic generation from plasmonic nanodimers: A comprehensive discussion

  • Jérémy Butet,
  • Gabriel D. Bernasconi and
  • Olivier J. F. Martin

Beilstein J. Nanotechnol. 2018, 9, 2674–2683, doi:10.3762/bjnano.9.250

Graphical Abstract
  • nanorods with hemispherical extremities and various gap distances. In order to unveil the role of the silencing effect, computations of the SHG considering only the surface second harmonic sources on specific parts of the dimers are also presented. The meshes describing the dimers are then slightly
  • the SH surface currents [26][27]. Results and Discussion Gold dimers made of cylindrical nanorods We first consider the case of dimers made of gold nanorods, see Figure 1a. The diameter of the nanorods is 40 nm and their length is 85 nm. The smallest considered gap between the nanorods is 5 nm. Such
  • by each nanorod. As expected, this mode redshifts as the gap between the nanorods decreases, i.e., as the coupling increases [2]. As a consequence of this coupling, the bonding dipolar mode for a dimer always arises at a longer wavelength than the longitudinal electric dipole mode of the
PDF
Album
Full Research Paper
Published 15 Oct 2018

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • Abstract Active plasmonics is a key focus for the development of advanced plasmonic applications. By selectively exciting the localized surface plasmon resonance sustained by the short or the long axis of silver nanorods, we demonstrate a polarization-dependent strong coupling between the plasmonic
  • resonance and the excited state of photochromic molecules. By varying the width and the length of the nanorods independently, a clear Rabi splitting appears in the dispersion curves of both resonators. Keywords: active plasmonics; photochromic molecules; plasmon; Rabi splitting; strong coupling
  • polarization. In this context, a polarization-dependent external control of the plasmonic properties could be of prime interest for active plasmonic devices. In this work, we make use of the same protocol as in [16] and apply it to nanorods to demonstrate a polarization-dependent strong coupling between
PDF
Album
Full Research Paper
Published 08 Oct 2018

Nanoantenna structures for the detection of phonons in nanocrystals

  • Alexander G. Milekhin,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Alexander V. Latyshev,
  • Volodymyr M. Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2018, 9, 2646–2656, doi:10.3762/bjnano.9.246

Graphical Abstract
  • metal films, the enhancement was found to depend on the island aspect ratio and the size of the gap between nanoclusters [9][10]. It is worth noting that SEIRA is maximized for elongated metal nanoclusters (nanorods or nanoantennas) with a high aspect ratio (length-to-width ratio) and a small gap
PDF
Album
Full Research Paper
Published 05 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • synthesis methods resulting in a wide range of morphologies, such as mesoporous structures [4], microtubes [5], microdendrites, nanoparticles [6][7][8], nanorods [9][10], nanotubes [11][12][13], nanowires [14], and nanosheets [15][16]. Standing out from the rest of the synthesis techniques, electrochemical
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • , nanostructures of ZnO were synthesized in four different morphologies: nanorods, nanoneedles, nanotubes and nanoplates. To determine the peculiarities of adsorption for each morphology, a series of electrochemical measurements were carried out using these nanostructured ZnO coatings on the working electrodes
  • nanoplates), whereas the lowest sensitivity corresponded to ZnO nanorods with a large diameter (i.e., low surface-to-volume ratio). The efficiency of sedimentation is also related to the electronegativity of adsorbate: it has been shown that all observed ZnO morphologies exhibited significantly higher
  • obtaining ZnO nanostructures in various morphologies, such as ZnO nanoneedles, nanorods, nanotubes, nanoplates, etc. Also the purpose of our previous research was to identify optimal growth parameters for obtaining a homogeneous, dense, well-aligned nanostructured ZnO coating with good adhesion to hard
PDF
Album
Full Research Paper
Published 11 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • the flower-like architecture. The representative ACO/BMO-30 displays the flower-like structure, the surface of which is decorated with Ag2CO3 nanoparticles (size: 10–50 nm, Figure 2c,d). In contrast, the previously reported Ag/Ag2CO3/Bi2MoO6 is composed of Bi2MoO6 nanoplates and Ag/Ag2CO3 nanorods
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • expect a strong influence of the NC size on the CB level position favorable for the “band design” of the light absorber to fit the energy levels of various ETL materials. The Sn-based HPs can be synthesized in a variety of nanoscale morphologies, including 0D NCs, nanorods, nanoplatelets, etc., allowing
  • in octadecene [130][133][134]. The shape of nanoscale Cs2SnI6 can be tuned quite easily by varying the duration of crystal growth. The reaction between Sn(IV) oleate and CsI yields ≈2.5 nm NCs in a minute after cesium iodide injection (Figure 7b), where the NCs transform into HP nanorods after a 5
  • min ripening at 220 °C (Figure 7c) [133]. The Cs2SnI6 nanorods gradually transform into nanowires (Figure 7d) with the aspect ratio increasing from 3 to 28 after a 10 min reaction. At longer reaction times (30 min) nanowires transform into nanobelts (Figure 7e) that assemble into nanoplatelets with a
PDF
Album
Review
Published 21 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • SnO2 (ICTOs) NRs using electrospinning for room temperature NOx sensing. Pristine SnO2 nanorods show an average diameter of 474 nm, whereas the average diameter of 3ICNO (Sn:In atomic ratio 25:0.3) is 230 nm. The TEM images (Figure 11a–d) show that NPs are connected through a neck between grains that
  • improve electron conduction. The dynamic response of the 3ICTO sensor is shown in Figure 11e. The 3ICTO nanorods show the highest response of 8.98 toward 100 ppm of NOx at room temperature. The response time for 3ICTO is 4.67 s, that is, 11-times
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Synthesis of carbon nanowalls from a single-source metal-organic precursor

  • André Giese,
  • Sebastian Schipporeit,
  • Volker Buck and
  • Nicolas Wöhrl

Beilstein J. Nanotechnol. 2018, 9, 1895–1905, doi:10.3762/bjnano.9.181

Graphical Abstract
  • of four different morphologies (nanorods as well as thorny, straight and curled CNWs) by taking the surface diffusion into account. The surface diffusion depends on the particle energies and the substrate material and thus explains the influence of these parameters. Keywords: aluminium
  • can be classified into four major classes: nanorods (Figure 3, sample 1), thorny structures (Figure 3, sample 2), straight CNWs (Figure 4, sample 3) and curled CNWs (Figure 4, sample 4). The mean wall length was measured to be between 127 and 391 nm for the curled CNWs and between 507 and 1152 nm for
  • material. Although the thickness of the CNWs was not systematically measured in this work, it is clearly visible from the SEM images that the thickness is also varying with the structure. Nanorods and thorny CNWs show a higher thickness compared to the straight and the curled CNWs. The latter feature a
PDF
Album
Full Research Paper
Published 29 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • displays, X-ray sources and cold-cathode electron sources [2]. 1D and 2D materials such as carbon nanotubes [3], ZnO nanorods [1], LaB6 nanowires [2], SnS2 nanosheets (NSs) [4], vertically aligned graphene [5], WS2 nanotubes [6], MoSe2 nanosheets [7], and MoS2 NSs [8][9][10] are potential field-emitter
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • induced surface deformation at the hot spots upon laser illumination. The localization of the hot spots is then indirectly revealed in the subsequent AFM scanning of the surface [26]. Similarly, Murazawa et al. [30] spin-coated a pattern of gold nanorods with a photoresist before irradiating the sample
PDF
Album
Full Research Paper
Published 23 May 2018

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • nanogratings [15], plasmonic oligomers [16], dolmen arrangements of nanorods [17] and ring–disk dimers [18]. Fano resonances have also been observed in nanoholes such as coaxial apertures [19] and dolmen nanocavities [18]. The performance of an array of double split-ring cavities [20] as biosensors using Fano
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • Abstract To develop efficient and stable visible-light-driven (VLD) photocatalysts for pollutant degradation, we synthesized novel heterojunction photocatalysts comprised of AgI nanoparticle-decorated Ag2WO4 nanorods via a facile method. Various characterization techniques, including XRD, SEM, TEM, EDX
  • nanorods as the Ag source. The as-prepared AgI/Ag2WO4 heterojunctions exhibited remarkably higher photocatalytic activity than pure Ag2WO4 toward the degradation of rhodamine B (RhB), methyl orange (MO) and para-chlorophenol (4-CP) under visible light. Based on a systematic characterization and study, a
  • possible photocatalytic mechanism over AgI/Ag2WO4 was also elucidated in this work. Results and Discussion Preparation and characterization of catalysts Ag2WO4 nanorods decorated with AgI nanoparticles were prepared via an in situ anion-exchange method. Ag2WO4 nanorods were first synthesized by mixing
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Room-temperature single-photon emitters in titanium dioxide optical defects

  • Kelvin Chung,
  • Yu H. Leung,
  • Chap H. To,
  • Aleksandra B. Djurišić and
  • Snjezana Tomljenovic-Hanic

Beilstein J. Nanotechnol. 2018, 9, 1085–1094, doi:10.3762/bjnano.9.100

Graphical Abstract
  • ]. The defects are responsible for visible photoluminescence (PL) in TiO2 and have been observed in thin films [39][40][41], nanocrystals/nanoparticles [42][43][44][45][46][47], nanorods [48], nanotubes [49][50][51], nanosheets [52], nanoribbons [53] and fibres [54]. In material sciences, the PL spectrum
PDF
Album
Full Research Paper
Published 04 Apr 2018
Other Beilstein-Institut Open Science Activities