Search results

Search for "nanowires" in Full Text gives 317 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia Center of Research Excellent in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia 10.3762/bjnano.12.51 Abstract Silver nanowires
  • optoelectronics. Keywords: silver nanowires; high yield; visible luminescence; PET film; transmittance; sheet resistance; Introduction Several optoelectronic devices, such as solar cells, touch screens, LC displays, organic EL panels, light-emitting diodes, and organic light emitting diodes, use transparent
  • , carbon nanotubes (CNT), conductive polymers, and metallic nanowires, have been tested commercially as alternative to ITO films for flexible optoelectronic devices [6][7][8][9]. Amongst them, graphene and carbon materials, particularly CNTs, display low optical transparency and high sheet resistance owing
PDF
Album
Full Research Paper
Published 01 Jul 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland 10.3762/bjnano.12.47 Abstract We present detailed Raman studies of graphene deposited on gallium nitride nanowires with different variations in height. Our results indicate that different density and height of
  • nanowires impact graphene properties such as roughness, strain, and carrier concentration as well as density and type of induced defects. Tracing the manifestation of those interactions is important for the application of novel heterostructures. A detailed analysis of Raman spectra of graphene deposited on
  • different nanowire substrates shows that bigger differences in nanowires height increase graphene strain, while a higher number of nanowires in contact with graphene locally reduces the strain. Moreover, the value of graphene carrier concentration is found to be correlated with the density of nanowires in
PDF
Album
Full Research Paper
Published 22 Jun 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • growth of AgNPs with various morphologies, such as nanocubes, nanowires, and nanospheres, as shown in Table 3 [139][140][142]. Minimum requirements for AgNP quality control The physical and chemical properties of nanoparticles are important for the study of their behavior, biodistribution, safety, and
  • interactions with cells and living organisms. Multidisciplinary teams are essential to pave the way for the future use of AgNPs in living beings. Scanning electron microscope (SEM) with different morphologies: (A) bipyramidal, (B) nanowires, (C) nanocubes and transmission electron microscopy (TEM) micrographs
PDF
Album
Supp Info
Review
Published 14 May 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • spontaneous shape transition, from regular islands to elongated nanowires, upon high-temperature annealing of a thin Mn wetting layer evaporated on Ge(111). We demonstrate that 4.5 monolayers is the critical thickness of the Mn layer, governing the shape transition to wires. A small change around this value
  • modulates the geometry of the nanostructures. The Mn–Ge alloy nanowires are single-crystalline structures with homogeneous composition and uniform width along their length. The shape evolution towards nanowires occurs for islands with a mean size of ≃170 nm. The wires, up to ≃1.1 μm long, asymptotically
  • literature for other heteroepitaxial systems. Our study gives experimental evidence for the spontaneous formation of spatially uniform and compositionally homogeneous Mn-rich GeMn nanowires on Ge(111). The reliable and simple synthesis approach allows one to exploit the room-temperature ferromagnetic
PDF
Album
Full Research Paper
Published 28 Apr 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • ., metal nanowires, conducting polymers, carbon nanotube (CNT) inks, multiwall carbon nanotube (MWCNT) inks, and reduced graphene oxide) [69][70][71][72][73][74][75][76][77][78][79][80][81][82], can be easily absorbed or used as a coating layer on the surface of the paper due to its wettability and
  • main materials utilized on those P-TENGs were commercial tissue paper and silver nanowires (Ag NWs), which were key to their feasibility. The P-TENGs were built with two conductive paper pieces as the electrodes, which were sandwiched between two commercial tissue paper pieces. Three basic operation
PDF
Album
Review
Published 01 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • -field effect and localized surface plasmon resonance (LSPR) [32]. There are several applications in which use of 1D silver nanostructures such as nanowires (NWs) and nanorods (NRs) (at the same concentration) are preferred to other nanostructures due to stronger conductivity. For instance, 1D silver
  • nanostructures can provide desired electrical characteristics in conductive adhesives at lower concentrations compared to other silver nanostructures and micrometer-sized ones [88]. The research being conducted on the synthesis of silver nanowires (AgNWs) is currently gaining a lot of attention due to their
PDF
Album
Review
Published 25 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
PDF
Album
Review
Published 04 Jan 2021

Piezotronic effect in AlGaN/AlN/GaN heterojunction nanowires used as a flexible strain sensor

  • Jianqi Dong,
  • Liang Chen,
  • Yuqing Yang and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1847–1853, doi:10.3762/bjnano.11.166

Graphical Abstract
  • semiconductor nanowires (NWs) have been extensively studied in recent years due to the predominant mechanical flexibility caused by a large surface-to-volume ratio and unique electrical and optical properties induced by the 1D quantum confinement effect. Herein, we use a top-down two-step preparation method to
  • investigated and systematically analyzed under compressive and tensile strain. Here, we describe a strain sensor that shows a great application potential in wearable integrated circuits, in health-monitoring devices, and in artificial intelligence. Keywords: AlGaN/AlN/GaN nanowires; flexible; piezotronic
  • polarization distribution inside the heterojunction [7][8]. The piezotronic effect, described first by Zhong Lin Wang in 2007, is a combination of the piezoelectric effect and the properties of non-centrosymmetric semiconductor materials [9]. 1D semiconductor nanowires (NWs) are more suitable candidates for
PDF
Album
Full Research Paper
Published 10 Dec 2020

Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy

  • Tatsuya Yamamoto,
  • Ryo Izumi,
  • Kazushi Miki,
  • Takahiro Yamasaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2020, 11, 1750–1756, doi:10.3762/bjnano.11.157

Graphical Abstract
  • high-performance metal–oxide–semiconductor field-effect transistors (p-MOSFETs) [1][2] because the hole mobility of Si(110) is twice that of the other Si planes [3]. For surface science research, Si(110) has been used as a template substrate for self-assembled nanowires [4][5][6], nanomeshes [7], and
  • reliable production of nanowires and other nanostructures [7][10][11][12][13]. By annealing below 700 °C [14], the Si(110)-(16×2) reconstruction is formed over large areas on the Si(110) surface. It has been widely investigated by reflection high-energy electron diffraction (RHEED) analysis [14][15
PDF
Album
Letter
Published 19 Nov 2020

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • ], the fabrication of graphene nanomeshes [8], the formation of single Si nanocrystals embedded in SiO2 for single-electron transistors [9], the spatially resolved engineering of the thermal conductivity in individual Si nanowires [10], as well as the creation of nano-Josephson superconducting tunnel
  • mass-separated FIBs from a Co36Nd64 LMAIS to implant Co into Si at elevated temperatures, leading to metallic CoSi2 nanostructures down to 20 nm [13]. Ge nanowires could be grown by molecular beam epitaxy, via a vapor–liquid–solid process, on a Si substrate after formation of a regular seed array using
PDF
Album
Full Research Paper
Published 18 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt 10.3762/bjnano.11.153 Abstract Thermoelectric generators made by large arrays of nanowires perpendicular to a silicon substrate, that is, so-called silicon nanowire forests are fabricated on large areas by an inexpensive
  • doping parameters. These results are in good agreement with numerical simulations of the doping process applied to silicon nanowires. These devices, based on doped nanowire forests, offer a possible route for the exploitation of the high power factor of silicon, which, combined with the very low thermal
  • conductivity of nanostructures, will yield a high efficiency of the conversion of thermal to electrical energy. Keywords: nanowires; Seebeck coefficient; thermal conductivity; thermoelectricity; Introduction Thermoelectric generators for direct conversion of heat into electrical power will certainly play a
PDF
Album
Full Research Paper
Published 11 Nov 2020

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • coupled superconducting nanowires with quantum phase slips which may be used for interpretation of already existing experiments on meander-like nanowires and for the design of a novel set of superconducting sensors. Another very promising photon detector [16] was demonstrated for supersensitive detection
PDF
Editorial
Published 10 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • ][16]. It has also been demonstrated that it acts as a type of ion-beam resist in the fabrication of micro- and nanopore membranes and templates for nanowires by chemical etching of through-holes along ion tracks produced by high-energy ions [17][18]. In contrast to PMMA and PC polymers, PDMS is a
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

A self-powered, flexible ultra-thin Si/ZnO nanowire photodetector as full-spectrum optical sensor and pyroelectric nanogenerator

  • Liang Chen,
  • Jianqi Dong,
  • Miao He and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1623–1630, doi:10.3762/bjnano.11.145

Graphical Abstract
  • can greatly improve the portability and durability of the flexible PDs. In this work, a new type of self-powered high-performance full-spectrum flexible PDs consisting of ultra-thin p-Si/n-ZnO nanowires (NWs) is fabricated. The working mechanism of PDs based on p-Si/n-ZnO heterojunctions for PENGs is
PDF
Album
Full Research Paper
Published 27 Oct 2020

Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators

  • Mingliang Yao,
  • Guangzhong Xie,
  • Qichen Gong and
  • Yuanjie Su

Beilstein J. Nanotechnol. 2020, 11, 1590–1595, doi:10.3762/bjnano.11.141

Graphical Abstract
  • transportation control, and for environmental monitoring. Experimental Surface modification of a PTFE film The surface modification of a PTFE film was performed in a similar manner as described previously [34]. Deep reactive ion etching was employed to construct PTFE nanowires aligned on the surface. Isopropyl
  • electrode. Through deep reactive ion etching, polymer nanowires (average diameter of ≈150 nm and length values ranging from 410 to 680 nm) were created to vertically align on the surface of the PTFE film, as shown in Figure 1b. This modification on the PTFE surface not only enhances the effective contact
PDF
Album
Full Research Paper
Published 20 Oct 2020

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • revealing local structural properties is illustrated in [49], where crystalline and amorphous regions within core–shell silicon nanowires are discerned with an optical resolution of a few nanometers. This study further demonstrates that it is possible to combine polarization angle-resolved experiments with
PDF
Editorial
Published 07 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • -wrapped Ag nanowires using the chemical vapor deposition method in order to investigate their broad-spectrum and robust antimicrobial properties. The cryochemical synthesis method includes a simultaneous evaporation of a metallic and a volatile component (e.g., an organic monomer), followed by co
PDF
Album
Review
Published 25 Sep 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • Abstract The wafer-level integration of high aspect ratio silicon nanostructures is an essential part of the fabrication of nanodevices. Metal-assisted chemical etching (MACE) is a promising low-cost and high-volume technique for the generation of vertically aligned silicon nanowires. Noble metal
  • with a reflectance below 0.3%. The demonstrated technology can be integrated into common fabrication processes for microelectromechanical systems. Keywords: black silicon; bottom-up; metal-assisted chemical etching (MACE); nanowires; wafer-level integration; Introduction Silicon nanostructures
  • random structures are typically vertically aligned nanowires, also called nanorods. Silicon nanowire arrays can be designed to have a low reflectance of about 1% in a broad spectral range, depending on their geometry. These silicon structures exhibit efficient light trapping because photons are scattered
PDF
Album
Full Research Paper
Published 23 Sep 2020

Superconductor–insulator transition in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2020, 11, 1402–1408, doi:10.3762/bjnano.11.124

Graphical Abstract
  • Moscow, Russia Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany 10.3762/bjnano.11.124 Abstract We investigate superconductor–insulator quantum phase transitions in ultrathin capacitively coupled superconducting nanowires with
  • superconductor–insulator phase transition in each of the wires is controlled not only by its own parameters but also by those of the neighboring wire as well as by mutual capacitance. We argue that superconducting nanowires with properly chosen parameters may turn insulating once they are brought sufficiently
  • close to each other. Keywords: quantum phase slips; quantum phase transitions; RG equations; Introduction Quantum fluctuations dominate the physics of superconducting nanowires at sufficiently low temperatures making their behavior markedly different from that of bulk superconductors [1][2][3][4
PDF
Album
Full Research Paper
Published 14 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • grow germanium nanowires on different substrates is described. Keywords: dewetting; germanium; interfacial energy; Laplace pressure; nanostructure; nanowire; Ostwald ripening; wetting layer; Introduction Wetting phenomena as well as the formation and movement of droplets are essential for numerous
  • chalcopyrites [11], or precursors for complex structures, such as nanowires [12]. Silicon, germanium and silicon oxide nanowires, for example, can be formed on different substrates by using metal catalysts in the form of tin, indium or gold nanodroplets [13][14][15]. Such nanometre-sized one-dimensional
  • electron microscopy (TEM) images of gold particles formed on a silicon substrate at room temperature. Small gold clusters (<10 nm) are also seen between the droplets. Growth of germanium nanowires Figure 4 shows images of the resulting gold droplets on various substrates and the results after deposition of
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • controlled electrochemical polymerization of thiophene to produce polythiophene nanowires with tunable lengths [36][37]. In the context of their use for controlling surface architectures, insertion of the buffer layers between the assembling moiety and the solid substrate affects the assembly process via the
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • tungsten carbide nanowires with tailored diameters by tuning two key growth parameters, namely current and dose of the ion beam. Our results show the control of geometry in 3D hollow nanowires, with outer and inner diameters ranging from 36 to 142 nm and from 5 to 28 nm, respectively; and lengths from 0.5
  • to 8.9 µm. Transmission electron microscopy experiments indicate that the nanowires have a microstructure of large grains with a crystalline structure compatible with the face-centered cubic WC1−x phase. In addition, 3D electron tomographic reconstructions show that the hollow center of the nanowires
  • is present along the whole nanowire length. Moreover, these nanowires become superconducting at 6.8 K and show high values of critical magnetic field and critical current density. Consequently, these 3D nano-objects could be implemented as components in the next generation of electronics, such as
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • , Germany 10.3762/bjnano.11.99 Abstract Tip-enhanced Raman spectroscopy is combined with polarization angle-resolved spectroscopy to investigate the nanometer-scale structural properties of core–shell silicon nanowires (crystalline Si core and amorphous Si shell), which were synthesized by platinum
  • -catalyzed vapor–liquid–solid growth and silicon overcoating by thermal chemical vapor deposition. Local changes in the fraction of crystallinity in these silicon nanowires are characterized at an optical resolution of about 300 nm. Furthermore, we are able to resolve the variations in the intensity ratios
  • local structural properties of Si nanomaterials at the sub-10 nanometer scale using tip-enhanced Raman techniques. Keywords: core–shell nanowires; local crystallinity; polarization angle-resolved spectroscopy; silicon; tip-enhanced Raman spectroscopy; Introduction The properties of silicon are long
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • grow Te nanoflakes. In order to synthesize Te nanowires, Liang and collaborators [13] performed chemical reactions of Na2TeO3, in aqueous solution, via hydrothermal treatment, whereas Ma and colleagues [14] used a solvothermal approach on glass substrates. To synthesize Te nanotubes, techniques such as
  • galvanic displacement of sacrificial cobalt nanowires were employed [15]. Lastly, to grow one-dimensional nanostructures, either template-free electrodeposition of Te, from an ionic liquid binary mixture [16], or thermal evaporation in a furnace under argon gas flow [17] were strategies utilized. The
  • nanotube-based sensors showed similar (or sometimes lower) numbers regarding sensitivity and response/recovery times in comparison to Te single-crystalline microtube-based gas sensors [7]. An increase in the gas-sensing performance was achieved by growing single-crystal Te-based nanotubes and nanowires via
PDF
Album
Full Research Paper
Published 10 Jul 2020

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • . Possibilities to produce multilayer porous structures are demonstrated. At the same time, one-step anodization in a HNO3 electrolyte is shown to lead to the formation of GaAs triangular shape nanowires with high aspect ratio (400 nm in diameter and 100 µm in length). The new data are compared to those
  • previously obtained through anodizing GaAs(100) wafers in alkaline KOH electrolyte. An IR photodetector based on the GaAs nanowires is demonstrated. Keywords: anodization; crystallographically oriented pores; gallium arsenide (GaAs); nanowires; neutral electrolyte; photocurrent; porous GaAs; Introduction
  • Electrochemical technology became an established and cost-effective approach for the preparation of porous semiconductor matrices and arrays of nanowires with tailored architecture at the submicrometer scale [1][2][3]. Semiconductor nanotemplates provide many possibilities for nanofabrication through
PDF
Album
Full Research Paper
Published 29 Jun 2020
Other Beilstein-Institut Open Science Activities