Search results

Search for "oxidation" in Full Text gives 668 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • coefficient of adsorbed triolein (pulsed field gradient NMR), pore interconnectivity (variable temperature and exchange spectroscopy experiments using hyperpolarized 129Xe NMR) and oxidation state of Ti atoms (electron paramagnetic resonance). The obtained results enabled the detailed understanding of the
  • expectedly showed no signals of Ti(III) around 3500 G due to its oxidation state Ti(IV), which is diamagnetic and thus EPR-silent. Both samples, C-P-ETS-10/60 and P-ETS-10/60, display a typical signal of high spin Fe(III) of dispersed paramagnetic centers. Their g-value of 4.3 is indicative of a large axial
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • and size, indicating that they are resistant to solubilization or oxidation. The dual STEM and EDX spectra from the Antibody-PEG5000Au-CPMV gave useful information about the spatial distribution of gold and sulfur across the cellular surface. The simultaneously acquired EDX spectrum images confirmed
PDF
Album
Full Research Paper
Published 07 Oct 2019

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • , these hydrogel polymers shrink and release water and other materials encapsulated inside. Typically, gold, silver, and copper are the most commonly used materials for NIR activation, with silver being intermediate in both cost and oxidation resistance. Previous efforts have reported the combination of
PDF
Album
Full Research Paper
Published 04 Oct 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • ]. Nonradiative absorption results in the generation of energetic charge carriers [11][12] and chemical bonds can be activated with the energy created by the charge carriers, documented by Christopher et al. who reported partial oxidation reactions on plasmonic Ag NPs induced by resonant light of relatively low
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

The influence of porosity on nanoparticle formation in hierarchical aluminophosphates

  • Matthew E. Potter,
  • Lauren N. Riley,
  • Alice E. Oakley,
  • Panashe M. Mhembere,
  • June Callison and
  • Robert Raja

Beilstein J. Nanotechnol. 2019, 10, 1952–1957, doi:10.3762/bjnano.10.191

Graphical Abstract
  • , but allows the system to maintain porosity after nanoparticle deposition. This will aid diffusion of reagents through the system, allowing continued access to the active sites in hierarchical systems, which offers significant potential in catalytic oxidation/reduction reactions. Keywords
  • average oxidation state (Auδ+, Figure S11, Supporting Information File 1) than the Au foil (Au0) [20]. In all cases the data was satisfactorily fit with a single Au–Au path, at a bond distance of 2.85–2.86 Å (Figure 3 and Table 1). The Au coordination number for all Au/SAPO-5 systems was found to be lower
  • their inherent porosity aiding nanoparticle reduction. Such materials have potential in catalytic oxidations/reductions, with Au/HP-SAPO-5 IW yielding a turn over number (TON) of 35 (Table S5, Supporting Information File 1) for the catalytic oxidation of toluene (preliminary findings). These materials
PDF
Album
Supp Info
Letter
Published 25 Sep 2019

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • –H bonds as points of potential variations is a useful method to generate novel analogues of a lead structure without depending on de novo synthesis [19]. It is widely accepted that the oxidation of aliphatic C–H bonds could be an efficient approach to diversify complex structures [20]. In the
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • (Figure 3c) shows 2p1/2 and 2p3/2 at 725.47 eV and 711.78 eV, respectively, with the doublet separation of 13.69 eV. There are two typical satellite peaks at 719.00 eV and 732.02 eV, indicating the Fe3+ oxidation state [28][29]. The O 1s spectrum (Figure 3d) shows three peaks at 532.48 eV, 531.43 eV, and
  • ca. −1.1 V and the oxidation peak at ca. −0.7 V can be attributed to the reaction between Fe3+ and K+ in the electrolyte [21][31]. When plotting log i versus log v of the redox peaks according to the empirical Randles–Sevcik equation [32][33], the slope can be determined to be about 0.58, indicating
  • (Figure 6c) shows the Ni 2p1/2 and Ni 2p3/2 at 873.77 eV and 856.12 eV, respectively, along with two satellite peaks at 879.88 eV and 861.66 eV, indicating the existence of Ni in the oxidation state Ni2+ [12][36]. The spectrum of O 1s (Figure 6d) shows two peaks at 532.53 eV and 531.23 eV, corresponding
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • exhibits an enhanced catalytic activity for the aerobic oxidation of dibenzothiophene in diesel [52], and a reversible continuous breathing upon adsorption of different solvents [53]. Importantly, the planarity of the TTF ligands can be modulated by the breathing behaviour, which directly impacts on its
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Lipid nanostructures for antioxidant delivery: a comparative preformulation study

  • Elisabetta Esposito,
  • Maddalena Sguizzato,
  • Markus Drechsler,
  • Paolo Mariani,
  • Federica Carducci,
  • Claudio Nastruzzi,
  • Giuseppe Valacchi and
  • Rita Cortesi

Beilstein J. Nanotechnol. 2019, 10, 1789–1801, doi:10.3762/bjnano.10.174

Graphical Abstract
  • test methods suitable for assessing product efficacy and safety [15]. Vitamin E is a potent antioxidant, able to counteract the reactive oxygen species production during fat oxidation and free radical propagation – indeed it can protect the cell membranes from free radical attack, acting against lipid
PDF
Album
Full Research Paper
Published 29 Aug 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • weak magnetic features with saturation magnetization values below 1 emu/gNi at 300 K [15]. Ni nanoparticles can easily be prepared from bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2) in organic solvents [16] with the Ni atom already in the oxidation state zero and a low decomposition temperature of 60 °C
  • oxidation state +1, was reported to form phase-pure NiGa and Ni3Ga nanoparticles with Ni(COD)2 in the ionic liquid [BMIm][BF4] under microwave-induced pyrolysis at 230 °C [30]. GaCp* is reported to be thermally stable in organic solvents in the absence of hydrogen to up to 300 °C [43]. In imidazolium-based
  • Information File 1, Figure S6) indicates only one Ga species, but we note that the binding energies of the different Ga oxidation states are within 1 eV [50], which does not allow for an unequivocal assignment. The O 1s peaks at 531.30 eV and 531.18 eV clearly show only the presence of organic oxygen and no
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • reduction and oxidation peaks, corresponding to the redox reactions of typical Li/S batteries. These observations are consistent with the CV curves. In addition, the plateaus in the discharge–charge profiles are almost overlapped even after the 100th cycle, indicating a stable electrochemical performance of
PDF
Album
Full Research Paper
Published 19 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • cells through various processes, such as lipid peroxidation of cell membrane, damaging DNA and/or amino acid- and protein-based cell oxidation [50][51]. This analysis also evidenced that, although an important enhancement of CSTiO2 antimicrobial activity occurred within 60 min of UV irradiation, no
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • single redox species, element cross-contamination issues, which are common in other redox flow batteries such as Cr/Fe, are obviously nonexistent [1]. Nevertheless, the system suffers from irreversible capacity fade due to parasitic reactions such as air oxidation of V2+ species and hydrogen evolution
  • reaction (HER) at the negative electrode [2][3][4]. The air oxidation of V2+ species can be completely prevented by keeping the negative tank under inert gas atmosphere. However, the HER at the negative electrode is almost unavoidable as the redox potential of V3+/V2+ (−0.26 V vs normal hydrogen electrode
  • , both electrode surfaces tend to oxidize with the additional formation of oxygen functional groups [9][10]. Excess oxidation of the carbon felt can also introduce nonselective functional groups such as –C–O and –C=O and reduces the sp2 carbon content or the graphite content of the felt. The formation of
PDF
Album
Full Research Paper
Published 13 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • method employing KPFM and local conductivity AFM for the characterization of the work function of transition metal oxides may help in understanding the impact of reduction and oxidation on electronic properties, which is of high importance in the development of effective sensing and catalytic devices
  • . Keywords: Kelvin probe force microscopy (KPFM); reduction and oxidation; SrTiO3; TiO nanowires; TiO/SrTiO3 heterostructure; transition metal oxides; work function; Introduction Transition metal oxides are viewed today as some of the most promising materials in various fields, ranging from (photo)catalysis
  • the differences between TiO2 and SrO terminations of SrTiO3(100). The last part of the study is dedicated to the discussion of the work function response of both TiO and SrTiO3 surfaces upon oxidation via ambient air exposure, in order to provide insight into the effect of oxygen, water, and carbon
PDF
Album
Full Research Paper
Published 02 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • (Figure 11) [227]. The demonstrated network structures are connected by the coordination of terpyridine moieties to either cobalt or iron ions, and the synthesized films change their colour depending on the oxidation levels of the cobalt and iron ions. The colours of those MOF films can be modulated
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • –O and ether groups, respectively [24] (Figure 5b). For ZnO nanofibers and the ZnO/SiC_15 nanocomposite, the XPS spectra in the Zn 2p region depicted in Figure 6a,b contain only one component related to Zn in (+2) oxidation state. The XPS spectra in the O 1s region (Figure 6c,d) contain two
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • ]. Moreover, Mo can occupy multiple oxidation states, which enables a pseudo-capacitive charge transfer by insertion of electrolyte ions, such as Li+, Na+, K+ and H+ [28][29]. Upon cycling, MoS2 sheets can restack resulting in a decreased surface area, which is then followed by poor capacitive performance
  • %. This degree of oxidation is lower than in the case of chemically exfoliated MoS2, which is possibly due to a slightly lower degree of exfoliation [39]. Additionally, no oxidation was observed for sulfur as only states originating from sulfides were identified in the S 2p spectrum (Figure 3b) [40]. The
  • following discharge cycles the two peaks at ≈1.0 and ≈0.3 V diminish and three new reduction peaks at around 1.8, 1.1 and 0.3 V appear, which can be ascribed to the following reactions (Equations 1–3): Hence, the reduction peak at ≈1.8 V and the oxidation peak at 2.5 V form together a reversible redox
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • electrocatalytic applications is demonstrated using the methanol electro-oxidation as a test reaction. The Pt mass specific activity towards methanol oxidation of Pt-CNT/CNT/GC is approximately 2.5 times higher than that of Pt-CNT/GC, and the hierarchical electrode exhibits a more negative onset potential. Both
  • structures demonstrate an exceptionally high poisoning tolerance. Keywords: chemical vapor deposition; CNTs; CO stripping; hierarchically structured electrodes; methanol oxidation; platinum; poisoning tolerance; Introduction Carbon nanotubes (CNTs) have attracted considerable attention since their
  • ][5][6][7][8]. Besides the above-mentioned applications, CNTs have also been investigated as catalysts or catalyst supports for various electrocatalytic reactions [8][9][10][11][12][13], including methanol oxidation in direct methanol fuel cells (DMFCs). DMFCs are promising power sources for future
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1−xFexAly spin-valve structure

  • Andrey Andreevich Kamashev,
  • Nadir Nurgayazovich Garif’yanov,
  • Aidar Azatovich Validov,
  • Joachim Schumann,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Yakov Victorovich Fominov and
  • Ilgiz Abdulsamatovich Garifullin

Beilstein J. Nanotechnol. 2019, 10, 1458–1463, doi:10.3762/bjnano.10.144

Graphical Abstract
  • structure, HA and Ni play the roles of the ferromagnetic F1 and F2 layer, respectively, Cu(4 nm) decouples the magnetization of the F1 and the F2 layer, Pb(105 nm) is an S layer, Si3N4 is a protective layer against oxidation, and Cu(1.5 nm) is a buffer layer necessary for the optimal growth of the Pb layer
  • samples were covered with a protective Si3N4 layer to prevent oxidation of the Pb layer. The Ni layer with the thickness dNi≤ 2 nm has coercive field of the order of 2 kOe [20]. In the present study the Ni layer is deposited at a substrate temperature of Tsub≈ 150 K. Therefore its coercive field should be
PDF
Album
Letter
Published 19 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • . Gas sensing through resistance change caused by the oxidation of combustible gases on the surface is one of the major applications of WO3. However, the response mechanism of WO3 makes selective gas detection difficult. For WO3-based gas sensors, the working temperature is a key factor that can
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • nature as a whole. In recent years, advanced oxidation processes including Fenton [3], Fenton-like [4][5][6] and photocatalysis [7] reactions have been widely used in wastewater treatment. In addition, photocatalysis has attracted great attention due to advantages such as environmental sustainability
  • [10]. As one of the most promising photocatalysts, in terms of its chemical stability, non-toxicity, photo-corrosion resistance in aqueous media and advanced oxidation properties, titanium dioxide (TiO2) has been widely studied [11][12] and employed for water splitting [13], energy storage [14], and
  • industries is considered as an key organic pollutant due to its chemical stability, non-biodegradability, high light resistance and oxidation degradation, which may cause long-term damage to ecosystems. Therefore, the photocatalytic activity of the photocatalyst was studied under visible light with RhB as
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • revealed that long-time exposure (tens of seconds) to the electrical field leads to deep oxidation and the formation of perturbations greater than 1 µm in height, which hinder the I–V measurements. Keywords: Kelvin probe atomic force microscope; nanoinclusion; Schottky barrier; thermoelectric materials
  • cycles of I–V measurements. Newly formed perturbations were observed with a height of over 1 µm and a FWHM of 2 µm (Figure 4B). The changes in the electrical behavior as well as the growth of the perturbations can be explained by the growth of an isolating oxide layer by anodic oxidation. This has also
  • Au, i.e., ca. 1.5 × 108 V/m) [35][36]. At the Au–Bi2Se3 interface the oxidation of Bi2Se3 can occur accompanied by the formation of non-conductive bismuth oxides (optical Eg = 3.31 eV for a 60 nm BiOx film [58]). Typically, the thickness of surface oxide layers is much lower (of the order of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Warped graphitic layers generated by oxidation of fullerene extraction residue and its oxygen reduction catalytic activity

  • Machiko Takigami,
  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1391–1400, doi:10.3762/bjnano.10.137

Graphical Abstract
  • study employed a fullerene extraction residue as a starting material to construct WGLs. The oxidation of the material at 600 °C exposed the WGLs by removing the surrounding amorphous moieties. Transmission electron microscopy (TEM) observations revealed the formation of WGLs by oxidation treatment at
  • 600 °C in an O2/N2 stream. Extending the oxidation time increased the purity of the WGL phase, but also simultaneously increased the concentration of oxygen-containing surface functional groups as monitored by temperature programmed desorption (TPD). The specific ORR activity increased with oxidation
  • up to 1 h and then decreased with the intensive oxidation treatment. Correlations between the specific ORR activity and other parameters confirmed that the development of the WGL and the increase in the O/C ratio are the competing factors determining specific ORR activity. These results explain the
PDF
Album
Full Research Paper
Published 12 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • of SnO2 is a result of a cascade of oxidation processes. It is necessary to note that in addition to the completely oxidized form of Sn (SnO2), in gas flow there are products of the incomplete oxidation of tin, for example, SnO. On the substrate, this oxide decomposes following a disproportionation
  • reaction as Metallic tin forms on the surface nanodrops, dissolving tin dioxide and the products of the incomplete oxidation of tin (SnO, Sn2O3, Sn3O4) from the argon flow. This dissolution leads finally to the saturation of tin with tin dioxide that is stable at high temperature. After this saturation
  • intensity of the 533.6 eV component (Figure 6) of the O 1s line [51]. Previously, this component was observed on polycrystalline nanolayers formed by magnetron sputtering of tin and ambient air oxidation afterwards [47]. Figure 7 compares XANES Sn M4,5 spectra of the samples with those obtained on the SnO2
PDF
Album
Full Research Paper
Published 08 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • the photocatalytic processes. Moreover, the higher specific surface area of 0D/1D Au/CBO composites can provide more active sites. Furthermore, based on the photocatalytic oxidation/reduction potential, the CB position of CBO is more negative than the reduction potential of O2/•O2− (−0.046 eV vs NHE
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019
Other Beilstein-Institut Open Science Activities