Search results

Search for "performance" in Full Text gives 982 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • reach a ligament size of 75 ± 10, 104 ± 14, and 153 ± 20 nm for AlAg18, AlAg30, and AlAg38, respectively. No Raman signal was recorded on these samples after immersion for 24 h in 10−7 mol·L−1 of RhB. To understand the highest SERS performance of the AlAg30 sample dealloyed for 60 min, the composition
  • performance of the AlAg30 sample dealloyed for 60 min in HCl results from a compromise between a small size of ligaments and the lowest amount of contamination together with the highest amount of silver on the surface. Influence of the dealloying media Finally, the influence of the dealloying media was
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • problems concerning increasing energy demands, a revolutionary solution is needed with two goals to be simultaneously reached: energy saving and increase in the capability of novel computers. The future of high-performance computing with low energy consumption is clearly associated with technologies with
PDF
Editorial
Published 10 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • performance improvement can be solved with the help of spintronics devices, which are currently presented in a fairly wide variety of valuable effects: spin valves and valves in thin films and heterostructures [19][20], sensors based on the anomalous Hall effect [21], spin injection and magnetism detection
  • discussed in detail in [34]. Phase-transition memory technology is among actively developing and promising technologies since it enables the design of small devices with high performance, durability, and cost-effectiveness. The authors of [34] review how the characteristics of phase transition memory
PDF
Album
Full Research Paper
Published 04 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • nanotubes [39][40]. In the presence of ions, water flows through a charged nanocone under an electrical field [41][42], and this flow is higher than the one induced by pressure. Consequently, the desalination performance observed in carbon nanocones is better than that observed in nanotubes or nanometric
PDF
Album
Full Research Paper
Published 02 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • to improve the performance of optoelectronic devices. One of these materials is indium tin oxide (ITO), which combines high transparency with high conductivity [7][8]. However, a single layer of as-deposited ITO shows a high resistivity. Consequently, inserting a very thin metal film layer can
  • . The concentration and mobility of charge carriers need to be increased to overcome this problem. Furthermore, enhancing electrical and optical performance at the same time is a critical research topic that has many challenges. Generally, the physical properties of TC materials are essentially affected
  • ] who used ITO/Ag and ITO/Ni bilayers. The figure of merit (FOM) is a quantitative value that can evaluate the performance of the device. From the sheet resistance (Rs) and the optical transmittance (T), the quality of the thin film can be calculated using the FOM relation in Equation 5 [33][34][35]: It
PDF
Album
Full Research Paper
Published 28 Dec 2022

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • ][15][16][17][18]. The performance of Josephson oscillators is limited by impedance mismatch [18][19] and self-heating [13][17][20][21]. Proper device engineering can obviate these obstacles and improve the performance [18]. A single JJ is able to emit EMWs, but with a low power [22]. Therefore
PDF
Album
Full Research Paper
Published 28 Dec 2022

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • performance in both individualization and chirality separation of carbon nanotubes, excessive surfactant concentrations are usually required for their complete individualization [2][8][11]. Such excess subsequently introduces an additional step of surfactant removal to recover the SWCNTs in a pristine state
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • conductivity have been widely used in water splitting reactions [10][11]. However, noble metals are still rare and expensive materials, and their application as electrode materials is considered to be not optimal [10]. Therefore, the study of a materials with high-performance in PEC water splitting, which
  • has been demonstrated. The ability to enhance the optical interaction of the heterostructures was presented through the reduction of the bandgap energy. The outstanding application performance of g-C3N4/TNAs and MoS2/TNAs combinations was presented. In detail, the excellent water-splitting ability of
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • up to 1h). The organic compound concentrations were evaluated by using HPLC. Analysis Changes in phenol concentration were determined by a high-performance liquid chromatography system (Shimadzu, Japan) equipped with a UV detector (SPD-10AV) and a C18 column (Knauer 250 × 4.6 mm, Eurospher II 100-5
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • the photocatalytic performance [4][5]. Because TiO2 only exhibits photochemical activity under UV excitation, which accounts for a small fraction (ca. 4%) of the solar energy, numerous modification methods such as doping with nonmetals, coupling with other catalysts, and attaching to supports have
  • . This approach improves solar water splitting performance [7][9]. However, an excess amount of CNTs can deteriorate the photoactivity of TiO2 nanoparticles because CNTs block and cover the surface of TiO2 [9]. There are three categories of water splitting techniques applying photocatalysts, namely
  • naturally luminous emittance. The relation of current and potential is recorded under dark (D) and light (L) conditions corresponding to the sunlight intensity below 10 lux and around 100 lux. Photoelectrochemical water splitting performance experiments are carried out under natural sunlight using a two
PDF
Album
Full Research Paper
Published 14 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • /CCCDI—UEFISCDI, through the Core Program PN 16N/2019 LAPLAS VI, grant no. PN 19 15 01 01 and through Program I—Development of the National R & D System, Subprogram 1.2–Institutional Performance–Projects for Excellence Financing in RDI, contract no. 13PFE/2021.
PDF
Full Research Paper
Published 12 Dec 2022

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • . This is in sharp contrast to typical macroscale applications where, for example, the mechanical properties of steel and concrete can be directly used by engineers to design a bridge and predict its performance under real-life conditions. Finally, there is not sufficient communication between AFM
  • also enable performance analyses that could be extended to more complex and relevant scenarios, aided by advanced analysis tools such as machine learning (see below in Figure 1). Decoding frequency-dependent nanomechanical measurements for disease study and follow-up The broad adoption of AFM
  • , tendons, ligaments, and bones have a direct impact on the patient’s locomotion or athletic performance. As the length scale of the probe increases, so do the probe–sample interaction forces observed during the measurement, and the characterization returns greater mechanical information about deeper and
PDF
Album
Perspective
Published 09 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • cobalt ions in the electrolyte above 4.2 V. Therefore, the practical capacity of the LCO material is approximately 150 mAh·g−1 [5][6][7][8][9]. One of the ways to improve the performance is (i) to obtain a nanosized LiCoO2 material in different forms and shapes using chemical or physical syntheses (see
  • improve electrical conductivity and electrochemical performance [5][6][7][9][13][14][15][16][23][24][25][26][27][28][29][30][31][32]. Nanostructured materials can reduce the specific surface current rate as well as improve stability and specific capacity [23][24][25][26][27][28][29]. LiCoO2 has been
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • the applications of impedance DNA hybridisation biosensors for the detection of a number of analytes [31][32][33][34]. Nanomaterials may significantly enhance biosensor performance, stability, repeatability, and sensitivity [35][36][37][38][39]. Among various nanomaterials, graphene (Gr) [40] and gold
  • nanoparticles (AuNPs) [32] based nanocomposites are well established [41] due to their excellent performance. In particular, self-decorated AuNPs in the honeycomb-structured graphene lattice could facilitate the accommodation of a greater number of recognition probes. In addition, Gr is a nanomaterial with a
  • , following an almost slow constant increment between 30 and 40 °C, then it linearly decreases. Therefore, the suitable hybridisation temperature ranges from 30 to 40 °C, although at 40 °C the performance is slightly better. Throughout the trials, the optimal hybridisation temperature was set to 40 °C. Before
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • irradiation, AB-LNPs exhibited synergistic photothermal effects with significantly reduced dosage compared to monotherapy (treatments with Au-LNPs or free BODIPY alone). This study thus provides a facile and adaptive strategy for the development of a scalable and safe high-performance nanoplatform for
  • cellular uptake efficiency (Figure 4) and good synergistic PTT (Figure 5). BODIPY compounds possess diverse structures, adjustable spectra, and excellent photostability. Therefore, researchers have been committed to improving the photothermal performance of BODIPY for effective PTT [29]. Two strategies
PDF
Album
Full Research Paper
Published 02 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • controlling the cavity length of the structure. Further, the two types of BIC can be converted into quasi-BIC (QBIC) by either changing the spacing between adjacent gratings or changing the distance between the upper and lower gratings. The simulation results show that the dual-band high-performance sensor is
  • index of the surrounding medium. In this section, we will investigate the sensing performance of the proposed structure through the variation of two key structural parameters (α and h). Besides the Q-factor, the sensitivity (S) and FOM are also two important parameters for a refractive index sensor
  • fabrication of the device requires removing the silicon handle and BOX layer twice (it makes the structure symmetrical), which makes the fabrication challenging to some extent. However, the simulation results show that the symmetrical structure of the device can improve the performance of the sensor. The h
PDF
Album
Full Research Paper
Published 25 Nov 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • interpretation of release behavior. These quantitative evaluations help to accelerate the drug development processes by estimating the in vivo performance of formulations. The results of the release kinetics modelling studies are presented in Table 3 and Figure 5. In Figure 5, DCX release curves and the curves
PDF
Album
Full Research Paper
Published 23 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • . The mechanistic insights on the transfer and separation of charge carriers along with the photodegradation performance and reactive oxygen species (ROS) trapping have been enunciated in detail. The apparent quantum efficiency (AQE) further substantiated the potential of MBN to be used as a visible
  • reflectance for the specified materials, respectively. It was observed that the MBN had an enhanced LHE (90%) in comparison to that of HBN with zero activity in the visible range, 85% (MBN-50), and 70% (MBN-25). Electrochemical analysis The EIS analysis provides further evidence on the enhanced performance of
  • MBN-80 thus demonstrates the enhanced electrochemical performance and lower charge transfer resistance. This mainly means an enhanced electron transfer from MBN-80 for a favourable visible light photocatalysis. Additionally, the capacitance of the electrical double layer generated at the semiconductor
PDF
Album
Full Research Paper
Published 22 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • biological models. The expectation to find technically useful functional systems in living nature is commonly explained with evolution, because selection would lead to “smart” and “efficient” structures [1]. A huge pool of high-performance structures, practically “ready to harvest” would, therefore, be
  • [26]. The Salvinia hair type appears to represent the result of evolutionary adaptation to a high performance and is, therefore, considered as an attractive biological model for applications requiring surfaces that remain dry upon immersion [5][29]. Springtails (Collembola) Springtails (Collembola
PDF
Album
Perspective
Published 17 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • Roopakala Kottayi Ilangovan Veerappan Ramadasse Sittaramane Department of Physics, Kanchi Mamunivar Govt. Institute for PG Studies and Research, Puducherry-605008, India 10.3762/bjnano.13.110 Abstract The high light-harvesting ability of quantum dots (QDs) plays an eminent role in the performance
  • performance studies. The fabricated QDSC have superior electrochemical activity with a photoconversion efficiency of 4.91%. Keywords: alloyed QDs; photoconversion efficiency; photovoltaic performance; quantum dots; Introduction Human life depends on various forms of energy. Approximately 13 terawatts of
  • electrochemical activity. It can boost charge recombination and transport electrons readily, which contributes to the enhanced performance of the QDSC. The J–V curves of the AZGSSe/TiO2 photoanode-based QDSCs are displayed in Figure 8 and the corresponding photovoltaic parameters Jsc, Voc, and FF are 14.20 mA/cm2
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • modification is crucial in photocatalysis. Bi-based photocatalytic nanomaterials have gotten much interest as they exhibit distinctive geometric shapes, flexible electronic structures, and good photocatalytic performance under visible light. They can be employed as stand-alone photocatalysts for pollution
  • /storage due to their reactivity, surface area, and advantageous features compared to their bulk counterparts [2][3][4]. In recent years, many efforts have increased the photocatalytic performance. However, the relative photocatalytic performance is still deficient, and it does not fulfil the criteria for
  • environmentally beneficial alternatives [7]. The choice of the photocatalysts is one of the most important steps in attaining high performance in photocatalysis. Semiconductors with bandgaps greater than 3 eV are called wide-bandgap photocatalysts. These semiconductors include oxides (e.g., TiO2, Bi2O3, Bi2WO6
PDF
Album
Review
Published 11 Nov 2022

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • internal and external elements. The vast majority of studies have examined the performance of the adhesive system using adults and engineered materials and substrates (e.g., acrylic glass). Almost nothing is known about how the system changes with body size, nor how these changes would influence the
  • ability to adhere to surfaces in nature. Using Tokay geckos (Gekko gecko), we examined the post-hatching scaling of morphology and frictional adhesive performance in animals ranging from 5 to 125 grams in body mass. We quantified setal density, setal length, and toepad area using SEM. This was then used
  • to estimate the theoretical maximum adhesive force. We tested performance with 14 live geckos on eight surfaces ranging from extremely smooth (acrylic glass) to relatively rough (100-grit sandpaper). Surfaces were attached to a force transducer, and multiple trials were conducted for each individual
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • ) = 881 cm2/V·s) in these nanostructures. Thermoelectric devices, piezoelectric devices, photoconductive devices, gas sensing, solar cells, and field-effect transistors would have better performance if the mobility of charge carriers in the active region of the devices was greater. In addition, the low
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • Ke Xu Yuzhe Liu School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China 10.3762/bjnano.13.104 Abstract As a tool that can test insulators' surface morphology and properties, the performance index of atomic force microscope (AFM) probes is the most critical
  • factor in determining the resolution of microscopy, and the performance of probes varies in various modes and application requirements. This paper reviews the latest research results in metal, carbon nanotube, and colloidal probes and reviews their related methods and techniques, analyses the advantages
  • and disadvantages of the improved probes compared with ordinary probes by comparing the differences in spatial resolution, sensitivity, imaging, and other performance aspects, and finally provides an outlook on the future development of AFM probes. This paper promotes the development of AFM probes in
PDF
Album
Review
Published 03 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • Li ion batteries or pseudocapacitance supercapacitors [31]. These films were also employed as coatings of nano Si electrodes and successfully improved their performance [48]. As described above, different titanicone and Ti–organic MLD processes have been developed and although first principles
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022
Other Beilstein-Institut Open Science Activities