Search results

Search for "photodeposition" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • on the tips of the nanorods by photodeposition or galvanic reduction [47][48]. Another facile method included layer-by-layer self-assembly deposition of chemically synthesized Au NPs, ZnO, and analyte molecules and resulted in dispersedly distributed ZnO particles onto a Au NP monolayer surface [49
PDF
Album
Review
Published 27 May 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • , and it is considered a potent candidate for modifying TiO2 by photodeposition or radiolytic reduction. The prepared material exhibited antibacterial and antifungal properties under UV, visible and solar irradiation, and even in darkness [85]. Intriguingly, an enhanced antimicrobial activity of TiO2
PDF
Album
Review
Published 14 Feb 2022

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • Pangel B20, prepared by modification of montmorillonite and sepiolite with cationic surfactants, respectively) during sol-gel process, and ii) selective photodeposition of the noble metal in the previously formed TiO2@clay nanoarchitecture [131]. The good dispersion of the noble-metal NPs, clearly
  • rates of hydrogen production are obtained with the Pt-doped TiO2@sepiolite nanoarchitectures obtained by photodeposition (Figure 5B). Photocatalysts based on Ag-doped ZnO@montmorillonite reported by Sohrabnezhad and Seifi [144] are another example for the enhancement of photocatalytic activity through
  • photodeposition procedure, reprinted with permission from [131], copyright 2015 Elsevier; (B) hydrogen production in methanol photoreforming using this Pt-doped clay nanoarchitecture as catalyst [131]. The structural arrangement of the [Ru(bpy)3]2+–TiO2@clay nanoarchitecture and its photocatalytic activity in the
PDF
Album
Review
Published 31 May 2019

Deposition of metal particles onto semiconductor nanorods using an ionic liquid

  • Michael D. Ballentine,
  • Elizabeth G. Embry,
  • Marco A. Garcia and
  • Lawrence J. Hill

Beilstein J. Nanotechnol. 2019, 10, 718–724, doi:10.3762/bjnano.10.71

Graphical Abstract
  • be used to deposit nanoscopic noble metal particles onto a well-defined semiconductor nanorod substrate with diameters less than 10 nm. We found that photodeposition of platinum onto CdSe@CdS (core@shell) nanorods proceeded readily from Pt(acac)2 in the ionic liquid 1-butyl-3-methylimidazolium bis
PDF
Album
Supp Info
Letter
Published 14 Mar 2019

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • promising for the design of lithography-free and efficient hierarchical nanostructures for the generation of solar fuels. Keywords: catalysts; nanomaterials; nanophotonics; photodeposition; solar fuels; Introduction The relentless rise of CO2 levels in the atmosphere as well as the growth of the world
  • are simply randomly placed on semiconductor photo-electrodes with an optimized average density [20][24][25]. Photodeposition of the catalytic material with photogenerated charges from excited semiconductors has been also achieved but without a good control over the deposition sites [26][27][28][29][30
  • ][31]. An exception is the work of Li et al. [27], where charge separation was achieved at different crystal facets of BiVO4 nanocrystals for selective photodeposition of metal and metal oxide catalytic nanoparticles. Nevertheless, this method for the moment is limited to this specific material and
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • were modified with silver and gold by photodeposition, and characterized by diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). It was found that silver co-existed in zero valent (core) and
  • by using a new evaluation method. Results and Discussion Characterization of titania samples modified with NPs of silver and gold Six commercial titania samples were modified with gold or silver by photodeposition [53][54]. In brief, during photodeposition, metal cations were reduced by
  • photogenerated electrons on irradiated titania. To enable a efficient deposition of metals on titania, photodeposition was carried out in 50 vol % methanol as a hole scavenger and under anaerobic conditions to avoid electron scavenging by oxygen. To find the key factors of antimicrobial activity, various titania
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • issues [45][46][47][48][49]. Synthesis routes such as sol–gel, hydrothermal, microwave hydrothermal, impregnation, electrochemical deposition, chemical deposition, deposition-precipitation, UV photodeposition and direct sunlight photodeposition have been reported [23][50][51][52][53][54][55][56][57][58
  • adsorption stage and thus decrease the efficiency during photocatalysis [3]. The photodeposition method has overcome these disadvantages and produces a higher concentration of incorporated noble metal into the semiconductor composite [1]. This method is assisted by light whereby the deposition of noble metal
  • mechanism. Reprinted with permission from [35], copyright 2014 Royal Society of Chemistry. Synthesis of Pd/TiO2 photocatalyst via sunlight-assisted photodeposition [50]. Schematic of Au/AgBr-Ag heterostructure mechanism for improved photocatalytic performance. (a) Semiconductor-excited (AgBr) electron
PDF
Album
Review
Published 19 Feb 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • at higher temperatures [24]. Following the same general idea, Gärtner et al. investigated the effect of different Au precursors for Au loading via in situ photodeposition with sodium tetrachloridoaurate(III) dihydrate (NaAuCl4·2H2O) providing the most efficient water splitting catalyst. The same
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid

  • Shu Chin Lee,
  • Hendrik O. Lintang and
  • Leny Yuliati

Beilstein J. Nanotechnol. 2017, 8, 915–926, doi:10.3762/bjnano.8.93

Graphical Abstract
  • Puncak Tidar N-01, Malang 65151, East Java, Indonesia 10.3762/bjnano.8.93 Abstract Two series of Fe2O3/TiO2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe2O3/TiO2 for photocatalytic degradation of 2,4
  • photodeposition showed higher photocatalytic activity than the unmodified TiO2. Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe2O3(0.5)/TiO2. The improved activity of TiO2 after photodeposition of Fe2O3 was contributed to the formation of a heterojunction between the Fe2O3
  • stability and reusability, suggesting its potential for water purification applications. Keywords: 2,4-dichlorophenoxyacetic acid; Fe2O3/TiO2; herbicide degradation; heterojunction; holes and superoxide radicals; photocatalyst; photodeposition; water purification; Introduction Photocatalytic reactions
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2017

Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

  • Kah Hon Leong,
  • Hong Ye Chu,
  • Shaliza Ibrahim and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2015, 6, 428–437, doi:10.3762/bjnano.6.43

Graphical Abstract
  • Lumpur, Malaysia 10.3762/bjnano.6.43 Abstract Freely assembled palladium nanoparticles (Pd NPs) on titania (TiO2) nano photocatalysts were successfully synthesized through a photodeposition method using natural sunlight. This synthesized heterogeneous photocatalyst (Pd/TiO2) was characterized through
  • ; nano photocatalysts; noble metal; photodeposition; sunlight; Introduction Heterogeneous photocatalysts that employ TiO2 as metal oxide photocatalyst have raised the interest of many researchers since the discovery of the photocatalytic splitting of water under UV light irradiation by Fujishima and
  • photoactivity. There are several synthesis methods available for preparing plasmonic photocatalysts, namely photodeposition [3][30][31], hydrothermal [4][32][33][34], ion exchange [35][36], chemical reduction [25][37][38], physical vapour deposition [27][39][40], and deposition–precipitation [41][42][43]. Among
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2015

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • ) were used as the starting materials for the synthesis of ZnO nanostructures. Silver nitrate (AgNO3, Spectrochem, India) and trisodium citrate (Na3C6H5O7, CDH, India) were used for the photodeposition of Ag nanoparticles onto ZnO nanostructures. Methylene blue (MB, SRL India) was used as dye for
  • ions was carried out by irradiation of these suspensions with sun light for 2 h for the photodeposition of Ag nanoparticles onto the surface of ZnO nanostructures. The color of the suspensions changed rapidly from white to pale yellow and in some cases to grey depending on the Ag concentration. The
PDF
Album
Full Research Paper
Published 15 May 2014

Dye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen

  • Jun Fang,
  • Lisha Yin,
  • Shaowen Cao,
  • Yusen Liao and
  • Can Xue

Beilstein J. Nanotechnol. 2014, 5, 360–364, doi:10.3762/bjnano.5.41

Graphical Abstract
  • . This indicates the retaining of the Pt nanoparticle cores after the hydrothermal reaction. As a control sample, Pt/TiO2 was prepared through the photodeposition of Pt (1% in mole fraction) onto pure TiO2 particles that were prepared through the same hydrothermal method without using Pt nanoparticles
  • for the proton reduction and H2 evolution on the uncovered surface area of Pt. For the control sample Pt/TiO2, the TiO2 particles were synthesized through a hydrothermal method that was followed by the photodeposition of Pt nanoparticles, as shown in Figure S2 (Supporting Information File 1). The TiO2
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2014
Other Beilstein-Institut Open Science Activities