Search results

Search for "photovoltaic" in Full Text gives 145 result(s) in Beilstein Journal of Nanotechnology.

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • components in next-generation photovoltaic technology due to their high efficiency and low cost. In this article, recent progress in the development of perovskite layers, which are the basis of PSCs, is reviewed. Achievements in the fabrication of high-quality perovskite films by various methods and
  • , paving the way for their commercialization. In the closing section of this review, some future critical challenges are outlined, and the prospect of commercialization of PSCs is presented. Keywords: coating techniques; perovskite layer; perovskite solar cells (PSCs); perovskite structure; photovoltaic
  • been developed into solar cells, photodetectors and light-emitting diodes (Figure 1). In OIHP photovoltaics, perovskite solar cells (PSCs) have entered our field of vision. With their high efficiency and low cost, they are expected to be highly influential in next-generation photovoltaic technology. In
PDF
Album
Review
Published 06 Jan 2020

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • Road, Berkeley, California, 94720, USA 10.3762/bjnano.10.230 Abstract The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical
  • moisture and air as well as sunlight. Sb2S3 has attractive properties (Eg ≈ 1.7 eV, absorption coefficient α ≈ 1.8 × 105 cm−1 at 450 nm, anisotropic structure, inorganic) as a light absorber for conventional and semitransparent photovoltaic use [12][13][14]. Sb2S3 has been incorporated as a solar absorber
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • cells; polyvinylpyrrolidone; Introduction Due to the restrictions imposed by resources and the environment on the use of fossil fuels, in recent years, clean renewable energy technologies have received increasing attention, which has also driven the growth of the photovoltaic industry [1][2][3][4]. The
  • cell (iPSC), Pengcheng Zhou et al. managed to achieve a signifanct boost in efficiency [30]. The photovoltaic properties of inverted polymer solar cells using a PVP-modified indium tin oxide (ITO) layer as the electron-collecting electrode were reported on by J. W. Shim and co-workers [31]. In this
  • whole process was carried out under ambient conditions. Thus, our preparation method involves less toxic substances and is more environmentally friendly. Compared with previous preparation methods using aqueous lead nitrate solution as a precursor, our method can improve the photovoltaic performance of
PDF
Album
Full Research Paper
Published 05 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • of these NCs incorporated into the PTB7:PC71BM active layer of bulk-heterojunction ternary organic photovoltaic (OPV) cells. The OPV devices are fabricated with the direct configuration glass/ITO/PEDOT:PSS/PTB7:PC71BM:FeS2/PFN/FM. The Field’s metal (FM) is a eutectic alloy composed of 32.5% Bi, 51
  • follow the same trend. Keywords: iron disulfide; nanoparticles; organic photovoltaic cells (OPVs); PTB7; pyrite; Introduction Iron disulfide (FeS2) is a natural earth-abundant and nontoxic material with possible applications in lithium batteries, transistors or photovoltaic (PV) devices [1][2
  • electrodes in dye-sensitized solar cells (DSSCs) [9][12][13], as electron acceptors or donors in inorganic or hybrid solar cells [10][14][15][16][17] and as second electron acceptors in organic photovoltaic cells (OPVs) [18]. An iron pyrite thin film used as a counter electrode showed a conversion efficiency
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • microprobe analysis (EMPA)) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population. Keywords: Cu2ZnSnS4 (CZTS); Cu3SnS4 (CTS); green chemistry; kuramite; photovoltaic materials; solvothermal synthesis
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • confinement. These NCs present unique and interesting size-dependent physical properties for a wide range of application including lighting, non-volatile memories, and electronic and photovoltaic applications [1][2][3]. SiGe nanostructures exhibit a stronger quantum confinement effect than Si NCs [4] and have
PDF
Album
Full Research Paper
Published 17 Sep 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • confirmed by steady-state optical spectroscopy. Photovoltaic cells with one-dimensional C60 nanorods as active layer sandwiched by an indium tin oxide anode and an aluminium cathode exhibited enhanced photovoltaic capabilities. It also led to a significant enhancement of photogenerated charge carriers as
PDF
Album
Review
Published 30 Jul 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • , resulting in significant improvements of the quality of the ITO films that are commonly used as conductive transparent electrodes for photovoltaic structures. Starting from a single sintered target (purity 99.95%), ITO thin films of predefined thickness (230 nm, 300 nm and 370 nm) were deposited at room
  • Thin oxide films, used as contact electrodes [1][2][3][4], are considered to be important components of photovoltaic cells [5][6]. As an electrode candidate for solar cells, an ITO film [7][8] must present excellent optical and electrical properties for increased energy generation. At this time, the
  • [7][11]. Due to these features, ITO films are promising components for the development of high-performance optoelectronics [7][11][12][13] and photovoltaic devices. In order to use ITO thin films for photovoltaic applications, samples with reproducible properties are required [8][14]. The performance
PDF
Album
Full Research Paper
Published 25 Jul 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • resonators [11][12][13]. Using ionic liquid gating, ambipolar p–n junctions led to high-performance light-emitting diodes (LEDs) and photovoltaic devices [14]. Most interesting, however, was the demonstration of quasi-1D superconductivity, which reflected the non-centrosymmetric structure of the chiral WS2
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • -deposited thin CdS layer, allowing the nanodots to be optoelectronically active. The fabrication of these nanostructures in a vacuum environment and on an amorphous substrate is very interesting from an industrial point of view for photovoltaic applications. Representative SEM images of samples grown at (a
PDF
Album
Full Research Paper
Published 22 May 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • optimization. Due to the significantly increased surface-to-volume ratio of nanostructured materials, the development of interface passivation strategies is one of the major challenges in the case of photovoltaic devices where recombination losses are most harmful at the photoactive interfaces. To a large
PDF
Editorial
Published 26 Mar 2019

Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG

  • Imtiaz Ahmad,
  • Floor Derkink,
  • Tim Boulogne,
  • Pantelis Bampoulis,
  • Harold J. W. Zandvliet,
  • Hidayat Ullah Khan,
  • Rahim Jan and
  • E. Stefan Kooij

Beilstein J. Nanotechnol. 2019, 10, 696–705, doi:10.3762/bjnano.10.69

Graphical Abstract
  • , the process of self-assembly at the liquid–solid interface has proved to be an attractive self-assembly route [4][8][9]. The self-assembled structures can play an important role in magnetic [10][11][12][13], electronic [14][15][16], photovoltaic [17][18][19], biomedical [20][21][22], sensing [23][24
PDF
Album
Full Research Paper
Published 13 Mar 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • allow for the measurement of time-varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems. These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe tips used in
  • into the sample. They subsequently measured the (ac) electrostatic force as a function of time using a lock-in amplifier where the observed force decayed over several seconds. In the case of photovoltaic samples, simply shining light on them photoexcites charge carriers, which can result in charge
  • times of an organic photovoltaic thin film (MDMO-PPV:PCBM), shown in Figure 7, and demonstrated the ability of the technique to spatially resolve heterogeneities. Due to the difficulty in quantitatively extracting τ from the measured τFP, spatially resolved measurements are limited to relative charging
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Development of an anti-pollution coating process technology for the application of an on-site PV module

  • Sejin Jung,
  • Wonseok Choi,
  • Jung Hyun Kim and
  • Jang Myoun Ko

Beilstein J. Nanotechnol. 2019, 10, 332–336, doi:10.3762/bjnano.10.32

Graphical Abstract
  • Engineering and Biotechnology, Hanbat National University, Daejeon 34158, Republic of Korea 10.3762/bjnano.10.32 Abstract This study aimed to apply annealing processes during the coating of photovoltaic (PV) module glasses to PV modules already installed through an easy and simple procedure. Three types of
  • renewable energy sources that can replace fossil energy is required. Solar energy represents the highest proportion among the renewable energy sources, and it can produce clean electricity without noise or by-products [1][2]. Photovoltaic (PV) modules are installed outdoors and are thus exposed to various
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • Robin Vismara Olindo Isabella Andrea Ingenito Fai Tong Si Miro Zeman Photovoltaic Materials and Devices/Else Kooi Lab, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands École Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • uniform thickness to be applied as a photovoltaic absorber by ultrasonic spraying on planar glass/ITO/TiO2 substrates, followed by a post-deposition treatment. To this end, we studied the effect of the deposition temperature (TD), the molar ratio of precursors SbCl3 and thiourea (SC(NH2)2) in the spray
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • significant role for the in-operando characterization. SPM methods offer a plethora of operation modes beyond topography imaging, which is well reflected in the articles of this thematic issue. The majority of contributions stem from research on photovoltaic materials. Here, electrical conductive atomic force
  • cells. Tomography is achieved by gradually removing surface material during continuous high-load topographic imaging. For photovoltaic materials, the interface between materials accepting electrons or holes is of crucial importance. Laurie Letertre and co-workers study a nanocolumnar TiO2 surface
  • covalently grafted with a monolayer of poly(3-hexylthiophene) functionalized with carboxylic groups [8]. Their study unravels the physical mechanisms taking place locally during the photovoltaic process and its correlation to the nanoscale morphology. Electrochemical energy storage (i.e., in a battery) is a
PDF
Editorial
Published 10 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • introduction of defects in the crystal lattice acts to gradually decrease the bandgap of SnO2, which extends the emission spectra to the visible light range, making these nanoparticles technologically very important for optoelectronic devices and photovoltaic systems. Theoretically, the reported value of the
PDF
Album
Full Research Paper
Published 02 Jan 2019

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • ; bilayer; chromium; DC sputtering; molybdenum; optical reflectance; Introduction Molybdenum (Mo) thin films are widely used as a back contact for photovoltaic devices such as Cu(In1−xGax)S2 (CIGS) and Cu2ZnSnS4 (CZTS) thin-film solar cells. The back contact is the first layer to be deposited and its
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • along the [004] direction [44], accompanied by a higher photocatalytic performance in the degradation of an organic pollutant [45]. Lee et al. also reported an enhanced photoelectrochemical behavior in photovoltaic devices ascribed to the preferred crystalline orientation due to faster electron
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • respect to the water redox potential [3][9][10]. The spinel Co3O4 is interesting because of its dual bandgap (1.5 and 2.2 eV), high absorption coefficient, intrinsic p-type doping and chemical stability. It has found application as a light-absorbing entity in all-metal-oxide photovoltaic cells [11][12][13
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • wafer-based Si photovoltaic technologies as the wafers are being thinned down to 150 μm and below. Nowadays different photonic structures (and among them, mostly surface textures of different shapes and sizes) are being tested in solar cells in order to exploit their potential to couple and trap light
  • method (FMM), has been widely used in simulations of photovoltaic devices [2][3][15][16][17], including the structures similar to the ones explored in this paper [3]. It assumes lateral periodicity of the simulated structure. In the RCWA, an analyzed (multilayer) structure is sliced into thin sublayers
  • photovoltaic modules, such as perovskite-crystalline silicon tandem solar cells [31] including nano, micro and combined textures. In this paper, we focus only on heterojuction silicon solar cells. CMA simulations were performed for different discretization steps in the polar and azimuth angle to determine the
PDF
Album
Full Research Paper
Published 28 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • perovskites (HPs) and applications of these exciting materials as light harvesters in photovoltaic systems. Special emphasis is placed on the influence of the spatial organization of HP materials both on the micro- and nanometer scale on the performance and stability of perovskite-based solar light converters
  • with an outlook highlighting the most promising strategies for future progress of photovoltaic systems based on lead-free perovskite compounds. Keywords: light harvesting; low-toxic materials; organo-inorganic perovskites; solar cells; Review Introduction The field of photovoltaics and photochemical
  • light harvesting using nanocrystalline semiconductor materials is a thriving field of research that intersects physics, physical and material chemistry, photonics and photochemistry. The investment in photovoltaic solar cells has increased among other sustainable sources of electricity, whereby the
PDF
Album
Review
Published 21 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • monolayer of poly(3-hexylthiophene) (P3HT) functionalized with carboxylic groups (–COOH). Through a joint analysis of the photovoltaic properties at the nanoscale by photoconductive-AFM (PC-AFM) and surface photovoltage imaging, we investigated the physical mechanisms taking place locally during the
  • photovoltaic process and the correlation to the nanoscale morphology. A down-shift of the vacuum level of the TiO2 surface upon grafting was measured by Kelvin probe force microscopy (KPFM), evidencing the formation of a dipole at the TiO2/P3HT-COOH interface. Upon in situ illumination, a positive photovoltage
  • theoretical and material design perspective. Keywords: hybrid heterojunctions; hybrid photovoltaic; Kelvin probe force microscopy; photoconductive-AFM; photo-KPFM; poly(3-hexylthiophene); TiO2; Introduction Over the past decades, a large range of photovoltaic (PV) technologies have been developed for the
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • nanostructure and photo-transport mechanisms has become of crucial importance for the development of many emerging photovoltaic technologies. In this context, Kelvin probe force microscopy under frequency-modulated excitation has emerged as a useful technique for probing photo-carrier dynamics and gaining
  • access to carrier lifetime at the nanoscale in a wide range of photovoltaic materials. However, some aspects about the data interpretation of techniques based on this approach are still the subject of debate, for example, the plausible presence of capacitance artifacts. Special attention shall also be
  • photovoltage as a function of a frequency-modulated excitation source in photovoltaic materials, enabling to compare simulations and experimental results. We describe the general aspects of this simulation routine and we compare it against experimental results previously obtained using single-point Kelvin
PDF
Album
Full Research Paper
Published 20 Jun 2018
Other Beilstein-Institut Open Science Activities