Search results

Search for "plasmonic" in Full Text gives 224 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • radiative decay process resulting in very short lifetimes. A large enhancement in spontaneous emission rate (SER) is achieved by coupling the emitter’s emission to the resonance modes of photonics/plasmonic structures. These resonator structures provide the emitter with an enhanced local density of optical
  • states (LDOS) for the emission to couple to, thus enhancing the radiative decay process [74]. The enhancement in the SER is quantified in terms of the Purcell factor, which is defined as the ratio of the total SER of the emitter in the resonator to its SER in a vacuum [74]. These photonic/plasmonic
PDF
Album
Review
Published 08 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • Technology, Ministry of Education, Research Institute of Laser Engineering, Beijing University of Technology, No. 100 Pingle Park, Chaoyang District, Beijing 100124, People’s Republic of China 10.3762/bjnano.11.59 Abstract Plasmonic metal/semiconductor composites have attracted great attention for efficient
PDF
Album
Full Research Paper
Published 05 May 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • an exact number of metal atoms and surface ligands (Figure 1A,B). Therefore, NCs are considered as colloidal molecules. Similar to plasmonic nanoparticles, the stability of NCs can be controlled by ligand passivation using small molecules, synthetic polymers or biomacromolecules. A significant
  • difference between plasmonic AuNPs and AuNCs can be stated regarding the sensitivity. For observable changes to occur in physicochemical properties of plasmonic NPs, at least a layer of atoms needs to be removed (ca. 0.5 nm), whereas NCs already display remarkable changes after addition or removal of a
  • single atom. Additionally, due to covalently bound ligands, the NCs show extraordinary stability under ambient conditions. While plasmonic AuNPs display size-dependent surface plasmon resonance (SPR), NCs display characteristic molecule-like electronic spectra. This is attributed to the small size and
PDF
Album
Review
Published 30 Mar 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • Narutowicza 11/12, 80-233 Gdansk, Poland 10.3762/bjnano.11.40 Abstract Ag-based plasmonic nanostructures were manufactured by thermal annealing of thin metallic films. Structure and morphology were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution
  • quality of the nanostructures, in terms of their use as plasmonic platforms, is reflected in the UV–vis absorption spectra. The absorption spectrum is dominated by a maximum in the range of 450–500 nm associated with the plasmon resonance. As the initial layer thickness increases, an additional peak
  • responsible for dewetting. Especially because defects are always present in the interface between the substrate and the film. In the design of metallic nanostructure systems for plasmonic applications, the homogeneous distribution of nanostructures is very important, both in size and location on the surface
PDF
Album
Full Research Paper
Published 25 Mar 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • , suggesting a small influence of the sort of material or the crystal orientation of the substrate on the ripple formation. Recently, Saleem et al. have proposed to use the nanoripple structures formed by GCIB for plasmonic and biomolecular sensing applications [16][17]. In all above-mentioned studies planar
PDF
Album
Full Research Paper
Published 24 Feb 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • solution containing plasmonic nanoparticles (from red to blue) in the presence of molecules offers an excellent tool for colorimetric sensing without the need of using advanced techniques. Similarly, selective fluorescence quenching of organic dyes or semiconducting nanoparticles by plasmonic nanoparticles
  • giving rise to the so-called localized surface plasmon resonance (LSPR). The position and the bandwidth of the LSPR can be modulated by the shape of the nanocrystals and can vary between 400 and 2000 nm. The high absorption cross section (plasmonic nanoparticles absorb photons over a region about ten
  • times larger than their physical diameters) [59], and the lack of photobleaching (unlike organic fluorescent dyes and semiconductor nanocrystals) are additional parameters making plasmonic nanocrystals attractive materials for biosensing. Importantly, the position of the plasmon band and its bandwidth
PDF
Album
Review
Published 31 Jan 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • (HSs) have received increasing attention due to their potential application in a variety of areas [1][2][3][4] such as solar energy conversion or photocatalysis [2][5][6][7]. Among them, of great interest are TiO2 HSs modified with plasmonic nanoparticles (NPs), which allow for the combination of the
  • photocatalytic properties of TiO2 and the optical properties of plasmonic NPs [2]. This combination has been shown to extent the photocatalytic activity of TiO2, which is initially limited to UV light [8], to the visible or even to the NIR range of radiation [9]. Recent examples of the fabrication of plasmonic
  • dedicated to fabrication and application of plasmonic NP-modified TiO2 HSs have been published, including those mentioned above. In most cases the methodologies used are either complex or allow only for a limited control of the nanostructure morphologies and the resulting properties. In addition, we are not
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup

  • Lars Kool,
  • Floris Dekker,
  • Anton Bunschoten,
  • Glen J. Smales,
  • Brian R. Pauw,
  • Aldrik H. Velders and
  • Vittorio Saggiomo

Beilstein J. Nanotechnol. 2020, 11, 16–23, doi:10.3762/bjnano.11.2

Graphical Abstract
  • scientists for centuries, was discovered to be due to the presence of nanoparticles in the glass. This effect was due to two different metallic nanoparticles: silver nanoparticles (AgNP) and gold nanoparticles (AuNP). While the latters are responsible for the red plasmonic colour, the silver nanoparticles
  • illuminated from the front it shows a greenish colour (reflection), while illumination from behind shows a more yellowish/orange colour (reflection and transmission) (Figure 1b). We speculate that the yellow colour is due to the plasmonic colour of the small particle sizes, while the green colour is due to
  • properly tune and match the colour, but only mix and match for a hit or miss experiments. We have nevertheless proven that it is possible to create the Lycurgus effect in 3D printed material. Conclusion This research started as curiosity-driven research: can we, using modern knowledge about plasmonic
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2020

Plasmonic nanosensor based on multiple independently tunable Fano resonances

  • Lin Cheng,
  • Zelong Wang,
  • Xiaodong He and
  • Pengfei Cao

Beilstein J. Nanotechnol. 2019, 10, 2527–2537, doi:10.3762/bjnano.10.243

Graphical Abstract
  • different components, such as T-shaped, ring, and split-ring cavities, has been proposed which dramatically reduces the nanosensor dimensions without sacrificing performance. These design concepts pave the way for the construction of compact on-chip plasmonic structures, which can be widely applied to
  • nanosensors, optical splitters, filters, optical switches, nonlinear photonic and slow-light devices. Keywords: Fano resonance; metal–dielectric–metal (MDM) waveguide; nanosensor; on-chip plasmonic structures; surface plasmon polaritons (SPPs); Introduction Surface plasmon polariton (SPP) is a unique
  • light within sub-wavelength dimensions. Many plasmonic structures, such as high-sensitivity refractive index sensors [2], enhanced biochemical sensors [3], switches and filters [4], have been designed based on the concept of Fano resonance by utilizing a MDM waveguide [3][5][6]. Due to the interference
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • discussed above, the electromagnetic field is generated from the metal nanoparticles. When the AgNPs are on the aggregated copper surface, the electrical field intensity of the plasmonic resonance can be effectively amplified and increased. The results show that the SERS behavior of the AgNP pyramidal
PDF
Album
Full Research Paper
Published 13 Dec 2019

Small protein sequences can induce cellular uptake of complex nanohybrids

  • Jan-Philip Merkl,
  • Malak Safi,
  • Christian Schmidtke,
  • Fadi Aldeek,
  • Johannes Ostermann,
  • Tatiana Domitrovic,
  • Sebastian Gärtner,
  • John E. Johnson,
  • Horst Weller and
  • Hedi Mattoussi

Beilstein J. Nanotechnol. 2019, 10, 2477–2482, doi:10.3762/bjnano.10.238

Graphical Abstract
  • nanostructures made of more than one component nanomaterial, combined with biomolecules is a highly sought goal in biomedical science, and can find applications in multimodal imaging and therapeutics [1][2]. Although interest in developing such hybrid nanostructures by, for example, combining plasmonic and
  • . In one study, Jana and co-workers reported the design of fluorescent and plasmonic nanohybrids by covalent attachment of luminescent quantum dots (QDs) and Au nanorods. Further functionalization with glucose, using glutaraldehyde coupling chemistry, yielded nanohybrids that could subsequently be used
  • hybrid system consisting of self-assembled gold nanoparticles (AuNPs) and polymer-encapsulated QDs. These constructs were further functionalized with polyhistidine-tagged proteins, yielding functional conjugates that exhibit fluorescent and plasmonic properties [8]. Over the last two decades several
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators

  • Xiao bin Ren,
  • Kun Ren,
  • Ying Zhang,
  • Cheng guo Ming and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 2459–2467, doi:10.3762/bjnano.10.236

Graphical Abstract
  • 300072, China 10.3762/bjnano.10.236 Abstract A symmetry-breaking nanostructure is proposed to achieve multiple Fano resonances. The nanostructure consists of an asymmetric ring resonator coupled to a plasmonic waveguide. The broken symmetry is introduced by deviating the centers of regular ring. New
  • new opportunities to design on-chip optical devices with great tuning performance. Keywords: multiple Fano resonance; off-centered ring resonators; plasmonic waveguide; surface plasmon polaritons; symmetry-breaking; tunable resonance; Introduction Fano resonances originate from the interference of a
  • photoswitches [8]. Various structures have been designed to realize Fano resonances, including metallic nanoclusters [9][10], individual plasmonic dolmen nanocavity [11], ring/disk cavities [12][13], and metamaterials and metasurfaces [14][15][16]. In particular, as an important geometry, waveguide–cavity
PDF
Album
Full Research Paper
Published 11 Dec 2019

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • -core particles are obtained. This strategy can be easily transferred to other nanomaterials for the design of plasmonic nanoconstructs and sensor systems. Keywords: reverse microemulsion; silica coating; stepwise growth; thick shells; upconversion nanoparticles; Introduction Lanthanide-based
  • microemulsion technique in 2008 [42][43]. However, for certain applications such as sensing and plasmonics, a thicker silica shell is desired that can be loaded with sensor molecules or used as spacer for the plasmonic enhancement of the emission of UCNPs by gold or silver shells [45]. Moreover, since UCNPs can
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • ], high-resolution electrochemical and nanoelectrical imaging [7][8], Raman spectroscopy [9], nanoindentation [10], nanomechanical machining [11], plasmonic applications [12][13] and microscale grapping [14]. In parallel with the development of AFM cantilevers made out of traditional materials (e.g
PDF
Album
Full Research Paper
Published 29 Nov 2019

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • nonlinearity of a single nanostructure, but also reports surprisingly large plasmonic nonlinearities. Keywords: absorption cross section; laser scanning microscopy; nanoplasmonics; nonlinear absorption; nonlinear scattering; single gold nanostructures; Introduction It is well known that the optical
  • properties of plasmonic nanostructures differ significantly from those of the corresponding bulk materials, mainly because of two reasons, i.e., the enhancement in the surface-to-volume ratio and the appearance of resonance effects such as surface plasmon resonance (SPR). For example, the color, or more
  • precisely the scattering and absorption spectra, of metallic nanostructures can be completely different from their bulk counterparts. Plasmonic nanostructures, in general, are characterized by strong scattering, great photo-stability, high brightness and exceptional localization precision. In addition, SPR
PDF
Album
Full Research Paper
Published 06 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • devices. Of course, all important sensor activities cannot be described in this review. For example, sensors based on various advanced physical mechanisms such as plasmonic [194], dielectric sensing [195], surface-enhanced Raman scattering [196], Fabry–Pérot-based intraocular pressure [197], and/or novel
PDF
Album
Review
Published 16 Oct 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • resulted in groupings of Rh/Pt nanoparticles adsorbing to the concavities of the larger Ag nanostructures. The 400 nm Ag plasmonic absorption peak was slightly blue-shifted for Ag–Pt and red-shifted for Ag–Rh heterostructures. Catalytic activity for the reduction of 4-nitrophenol increased significantly
  • for Ag–Pt and Ag–Rh compared to the monometallic constituents, and persisted at lower loading ratios and consecutive reduction cycles. The enhancement is attributed to the Rh and Pt nanoparticles forming antenna–reactor-type plasmonic catalysts with the Ag nanostructures. Keywords: Ag; antenna
  • –reactor; catalysis; heterostructures; laser ablation; multicomponent; nanoparticles; 4-nitrophenol; plasmonic; Pt; Rh; Introduction Metal nanoparticles can interact with visible light through an excitation of the localized surface plasmon resonance (LSPR). The LSPR is a resonant, collective oscillation
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • regimes in the dynamics of the nanoparticle growth and in the optical response of the nanocomposite. Keywords: gold; imaging ellipsometry; metal nanoparticles; plasmonic nanocomposite; polymer films; Introduction Over the last 20 years, numerous studies were carried out to investigate the optical
  • properties of plasmonic nanocomposite materials from experimental, theoretical as well as numerical points of view [1][2]. Metal nanoparticles (NPs) play a central role in the development of nanotechnology-based optical devices. Gold nanoparticles (AuNPs) are used in spectrally selective coatings to block
  • solar infrared radiation [3][4], in random lasers [5][6], in non-linear optical applications [7][8][9] and in sensors or bio-medical diagnostics [10][11][12]. More recently, nanocomposites containing AuNPs received even more attention due to their saturable absorption. Indeed, plasmonic nanocomposites
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • its semi-metal bandgap structure and high anisotropy. In addition to angle-dependent photodetectors, its angle-resolved photoelectric properties may permit the development of plasmonic devices in which the surface plasmon polariton frequency has a highly directional dependence on the wave vector
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • system provides dispersed SERS substrates that can be evaluated by confocal Raman imaging. The nanoarchitectonic materials work as freestanding efficient plasmonic substrates for molecular detection. Nanoporous bitter-melon-shaped C60 crystals with face-centred cubic lattice were fabricated through
PDF
Album
Review
Published 30 Jul 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • and biological substances where the substrates are crucial for obtaining an enhanced Raman signal [43][44][45]. The Raman signal of SERS is enhanced remarkably in the “hot spots” that are generated in the nanogaps of plasmonic metal nanoparticles (e.g., Au, Ag and Cu) through the amplification of the
  • substrate composed of cellulose nanofibrils and silver nanoprisms [65]. Two further examples are the silver dendrite decorated filter membrane and the silver nanoparticle decorated plasmonic paper, which both had a detection limit for R6G of 1 × 10−11 M [56][66]. The current paper-based Ag-NP/cellulose-NF
  • μL aqueous solution of the complementary nucleoside was dripped onto the corresponding paper substrate, and then the SERS spectra were measured after drying under the same experimental conditions as noted above. The finite element method (FEM) modeling of the plasmonic properties of the silver
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019
Graphical Abstract
  • Vincenzo Amendola Department of Chemical Sciences, University of Padova, Padova, Italy 10.3762/bjnano.10.102 Abstract The use of plasmonic nanotags based on the surface-enhanced Raman scattering (SERS) effect is highly promising for several applications in analytical chemistry, biotechnological
  • suitability of plasmonic SERS labels for ultrasensitive analytical and biomedical applications is evident. Keywords: discrete dipole approximation (DDA); gold nanoparticles (AuNPs); nanotags; surface-enhanced Raman scattering (SERS); surface plasmon resonance (SPR); Introduction In surface-enhanced Raman
  • scattering (SERS), the Raman scattering cross-section of molecules adsorbed on the surface of plasmonic nanostructures is enormously increased compared to the same isolated molecules [1][2][3][4][5]. In particular, the SERS enhancement factor can reach values as high as 1012, which can be attributed to two
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • the size, shape, and arrangements of nanostructures, the material they are made of and the surrounding medium [6]. One of the easiest nanostructures to produce are metallic nanoparticles (NPs). Alone or in composites with other materials, they find numerous applications in plasmonic photocatalysis [7
  • ), through vis (527 nm, 532 nm [19]) to IR (1064 nm) have also been used. Even though several studies were reported on the PLD fabrication of plasmonic metal films, there are only a few recent studies discussing an influence of a wider range of deposition process parameters on the morphology and optical
  • properties of the films [19]. There are no studies that correlate a high number of PLD process parameters to the SERS properties of fabricated plasmonic metal nanoislands films. Herein, we report the results of studies on the influence of several parameters of the fabrication of silver nanoisland films
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • fluorescent imaging and plasmonic phothothermal abilities have not been reported previously. The multifunctional nanoparticles were stable in cell buffer, nontoxic and suitable for targeted fluorescent imaging and photothermal therapy of cancer cells. We demonstrate the enhanced accumulation of folate
  • designed parameters [3][4]. The AuNRs themselves can serve as contrast agents for two-photon [5][6], photoacoustic [7][8][9] and SERS [10][11] imaging, and for plasmonic photothermal therapy (PPT) [12][13]. However, the as-prepared AuNRs demonstrate high toxicity [14][15] and low stability in biological
  • transversal and longitudinal plasmonic peak intensities is 3.6, which is indicative to small amount of impurities in the AuNR sample. The adsorption of positively charged CTAB molecules on AuNR surface prevents a successful adsorption of dopamine. To make a PDA coating feasible, the CTAB molecules were
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • : materials and devices” covers the photo-electrochemical growth of platinum catalysts at plasmonic hot spots [6], the laser-assisted local growth of chalcopyrite absorbers [4], the preferential reactive ion etching of silicon by morphological anisotropies [5], the oxidation of copper nanoparticles resulting
PDF
Editorial
Published 26 Mar 2019
Other Beilstein-Institut Open Science Activities