Search results

Search for "responsivity" in Full Text gives 22 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • (KIMEC) sensors. A force sensor designed specifically for scanning probe microscopy must have a sharp tip that is readily positioned and scanned over a surface. We operate the sensor near a mechanical resonance with a high quality factor Q for enhanced responsivity to force. The mechanical resonator is a
PDF
Album
Full Research Paper
Published 15 Feb 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • -noise readout. With the voltage bias mode, we can select the optimal operating point with minimal NEP, maximal responsivity, and minimal electron temperature simultaneously, while the current bias mode makes it complicated to find this optimum. Therefore, the NEP level should significantly improve with
PDF
Album
Full Research Paper
Published 04 Jan 2024

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • responsivity, photoconductive gain, detectivity, and sensitivity with maximum values of 1.38 A·W−1, 4.33, 2.58 × 1011 Jones, and 1934.5% at a bias of 2 V, respectively. The sensing mechanism of the p–n heterojunction of CuO/ZnO is also explored. Overall, this study indicates that the heterostructure of CuO
  • , including 395 nm (purple), 465 nm (blue), 532 nm (green), and 640 nm (red). Our device exhibited a high photocurrent of 10.4 μA and good responsivity (1.38 A·W−1) at 2 V bias. Although this is a fundamental study, it highlights the potential of the CuO/ZnO heterostructure for visible-light photodetectors
  • difficult to reach, which increases the required decay time [47]. To evaluate the photodetector performance, some essential parameters are considered. The responsivity (R) is used to determine the applicability of the visible-light photodetector. R, which is defined as the photocurrent divided by the
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • a very high responsivity at 77 K (up to 9 kV/W), low noise equivalent power (NEP) of 3 × 10−13 W/Hz(1/2), and with a wide power dynamic range equal to 1 × 106 [18]. Integrating an aluminum Josephson junction, with a size of a few micrometers, operating as a single photon counter in the microwave
PDF
Editorial
Published 10 Jan 2023

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • > 0 where U0 and U are the voltages on the crystal in absence and in presence of the radiation, respectively. All measurements were performed in a liquid helium dewar at a temperatures T 4.2 K both for the samples and the detector. The calibrated responsivity of the detector at this temperature was
PDF
Album
Full Research Paper
Published 06 Dec 2022

Efficiency of electron cooling in cold-electron bolometers with traps

  • Dmitrii A. Pimanov,
  • Vladimir A. Frost,
  • Anton V. Blagodatkin,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 896–901, doi:10.3762/bjnano.13.80

Graphical Abstract
  • ; responsivity; Introduction Cooling is a key feature to improve the sensitivity of any receiver. Reliable dilution refrigerators providing temperatures below 100 mK have not yet been implemented for operation in space under zero gravity. But 3He cryostats, which provide temperatures down to 250 mK, are widely
PDF
Album
Full Research Paper
Published 07 Sep 2022

Numerical modeling of a multi-frequency receiving system based on an array of dipole antennas for LSPE-SWIPE

  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Dmitrii A. Pimanov,
  • Ekaterina A. Matrozova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 865–872, doi:10.3762/bjnano.13.77

Graphical Abstract
  • signal, depending on the signal power) with respect to the responsivity, which can be calculated using the heat balance equations [6]. The power load for the LSPE-SWIPE 145, 210, and 240 GHz frequency channels should be 11, 12.4, and 16 pW, respectively, as stated in Table 4 in [2]. The total NEP level
  • help reaching better noise characteristics than those of CEBs with two SIN tunnel junctions due to several reasons. First, the responsivity is increased by a factor of two due to hot electrons tunneling only through one SIN junction. Second, the bolometer resistance is decreased twice, which helps in
  • junction suppresses the Coulomb blockade, so the absorber volume can be decreased by a factor of four, leaving the capacitance unchanged. Therefore, the current responsivity is increased from 40–45 nA/pW to 80–100 nA/pW. Thus, the total NEP for this CEB concept should also be two times better than the
PDF
Album
Full Research Paper
Published 01 Sep 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • characteristic, responsivity, noise, and noise-equivalent power (NEP) for a 250 GHz external signal. The optimal number of junctions to obtain the minimum NEP was found. The use of a series of junctions allows one to increase the responsivity by a factor of 2.5, the NEP value by a factor of 1.5, and the power
  • dynamic range by a factor of 5. For typical YBaCuO Josephson junctions fabricated on a ZrYO bicrystal substrate by magnetron deposition, the following parameters were obtained at a temperature of 77 K: responsivity = 9 kV/W; NEP = 3·10−13 W/Hz(1/2); power dynamic range = 1·106. Keywords: array
  • [17][33][34]. The responsivity rV, which is a derivative of the ΔV(PMW) dependence, will be discussed later. The second important parameter is the output voltage noise δV. The theoretical estimation of δV according to the Nyquist formula gives a discrepancy with the experimental values by two orders
PDF
Album
Full Research Paper
Published 28 Mar 2022

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • thermionic emission. Small differences of the ϕb and Rs values can be attributed to the used approximation [29]. The responsivity and specific detectivity are other important parameters of a photodiode or photodetector. While the responsivity represents the response to the incident light, the specific
  • detectivity represents the inverse of the noise equivalent power [32]. Both responsivity and specific detectivity increased with increasing illumination power density and confirmed the good performance of the fabricated Au/CuNiCoS4/p-Si photodiode. This behavior was studied and discussed in the literature for
  • . Ideality factor, barrier height, series and shunt resistance values, as well as responsivity and specific detectivity were calculated and discussed in detail in terms of increasing light power. The Au/CuNiCoS4/p-Si photodiode has an ideality factor of 1.06 and a barrier height of 0.81 eV, and the ideality
PDF
Album
Full Research Paper
Published 02 Sep 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • , which leads to a rapid electron transfer from the surface reaction of the target gas with the MOS to the electrodes [35]. Additionally, MOS and graphene can form junctions at their interface. For example, p–p homojunctions can be formed between NiO and rGO to increase the gas sensing responsivity and
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

A self-powered, flexible ultra-thin Si/ZnO nanowire photodetector as full-spectrum optical sensor and pyroelectric nanogenerator

  • Liang Chen,
  • Jianqi Dong,
  • Miao He and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1623–1630, doi:10.3762/bjnano.11.145

Graphical Abstract
  • systematically analyzed. The self-powered PDs exhibit high responsivity (1200 mA/W), high detectivity (1013 Jones) and fast response (τr = 18 μs, τf = 25 μs) under UV illumination. High and stable short-circuit output currents at each wavelength from ultraviolet (UV) to near-infrared (NIR) demonstrates that the
  • -infrared (NIR) (1064 nm) under zero bias with fast response speed at each wavelength. The self-power PDs exhibit high responsivity (1200 mA/W), high detectivity (1013 Jones) and fast response speed (τr = 18 μs, τf = 25 μs) under UV illumination. The pyroelectric output current can drive a LED by harvesting
  • usually describes the ability to detect weak signals. The photoresponsivity is calculated by Equation 2 [3]: where R, S, q, and Idark represent responsivity, illuminated area, electronic charge, and dark current, respectively. The calculated detectivity D* of our device is as high as 1013 Jones. A one
PDF
Album
Full Research Paper
Published 27 Oct 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • monodisperse Ag2S NPs when using the CTAB surfactant. The optoelectronic properties of α-Ag2S/p-Si photodetector, such as current–voltage characteristics and responsivity in the dark and under illumination, were also improved after using the CTAB surfactant. The responsivity of the photodetector increases from
  • 0.64 to 1.85 A/W at 510 nm after adding CTAB. The energy band diagram of the α-Ag2S/p-Si photodetector under illumination was constructed. The fabricated photodetectors exhibited reasonable stability after three weeks of storage under ambient conditions with a responsivity of 70% of the initial value
  • . The current–voltage (I–V) characteristics of Ag2S/Si under dark and illuminated conditions were investigated at room temperature using a digital power supply, an electrometer, and a tungsten lamp. The spectral responsivity of the photodetector was measured using a calibrated monochromator in the
PDF
Album
Full Research Paper
Published 21 Oct 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • , we calculate figure of merits (FOMs) for these devices. FOMs such as quantum efficiency (QE), responsivity and dark-current limited detectivity (D*) are evaluated. The quantum efficiency, η, is defined as the ratio of the number of electrons in the external circuit produced by an incident photon of a
  • given wavelength, and the basic formula for the responsivity, R, is given as: where h and f are the Planck constant and the frequency of incident photon, respectively. Hence, the formula denotes a direct correlation between responsivity and quantum efficiency. The dark-current limited detectivity can be
  • defined via the following formula: where R, A, and H are responsivity, length of active region, and width of the device, respectively. Jdark is the dark-current density obtained from transport analysis in the absence of light. To calculate the dark current of the proposed photodetectors at different bias
PDF
Album
Full Research Paper
Published 15 Jul 2020

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • light. The current–voltage characteristics measured with and without illumination reveal a good ohmic quality of the prepared Cr/Au contacts (Figure 8). Therefore, one can conclude that the detector works in the photoconductor mode. The responsivity of the detector is defined as where Iphoto is the
  • photocurrent of the photodetector, Idark is the dark current, and Pill is the illumination power on the photodetector. The calculated responsivity of the GaAs nanowire photodetector equals 100 mA·W−1, according to the data presented in Figure 7B for a nanowire with a diameter of 400 nm and a length of 20 µm
  • account that the photodetector works in the photoconductor mode, the photocurrent increases linearly with increasing bias. This results in increasing responsivity and detectivity with increasing bias. For instance, the responsivity increases by a factor of three after increasing the bias from 5 to 20 V
PDF
Album
Full Research Paper
Published 29 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • is faster in devices based on spray pyrolysis films [29]. Solar-blind UV photodetectors with the highest responsivity to date were demonstrated on sapphire substrates by introducing ZnO or Al2O3 buffer layers [11][16]. With respect to photodetectors with p–n junctions, some photodetectors have been
PDF
Album
Full Research Paper
Published 12 Jun 2020

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • commonly used labels is fluorescein [37][38][39][40][41][42]. In biomedical applications, fluorescein has several advantages over other dyes such as nontoxicity, high water solubility, and pH responsivity. Fluorescein demonstrates a high fluorescence efficiency at basic pH values but becomes nonfluorescent
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • modern technology and industry ranging from electronic display devices to optical communication networks [2][3][4], thanks to their softness and flexibility, rapid molecular self-organization/reorganization, and sensitive responsivity to external stimuli [5]. For this reason, many researchers have been
  • electronics during the last decades. Technological breakthroughs can be achieved by introducing stimuli-responsivity or intelligence into the conventional LC biomaterials [114]. Hybridization with functional nanomaterials (e.g., stimuli-sensitive polymers, magnetic nanoparticles, carbon nanotubes and graphene
PDF
Album
Review
Published 18 Jan 2018

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • performance, high photoresponse gain, high responsivity (about 7 AW−1), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge
  • temperature, show superior performance, such as high responsivity, fast response time and great optoelectronic conversion efficiency over a wide operation bandwidth. Our deposition approach emphasizes the great potential of Ge-nps embedded in SiO2 thin films for hybrid integration, as they may be employed in
  • following equation [40]: where Iph is the measured photocurrent under illumination and Pin is the optical power incident on the active area of the structure (measured with a power-meter LaserStar (Ophir) coupled with a sensor 3A-P-SH-V1). Responsivity shows an increase from approximatively 2 AW−1 to about 7
PDF
Album
Full Research Paper
Published 21 Oct 2016

Sequence-dependent electrical response of ssDNA-decorated carbon nanotube, field-effect transistors to dopamine

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2113–2121, doi:10.3762/bjnano.5.220

Graphical Abstract
  • FETs lack responsivity and selectivity for its detection due to the presence of interfering compounds such as uric acid (UA). Surface modification of CNTs using single-stranded deoxyribonucleic acid (ssDNA) renders the surface responsive to DA and screens the interferent. Due to the presence of
PDF
Album
Full Research Paper
Published 13 Nov 2014

Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

  • Domenico Melisi,
  • Maria Angela Nitti,
  • Marco Valentini,
  • Antonio Valentini,
  • Teresa Ligonzo,
  • Giuseppe De Pascali and
  • Marianna Ambrico

Beilstein J. Nanotechnol. 2014, 5, 1999–2006, doi:10.3762/bjnano.5.208

Graphical Abstract
  • so far, in Figure 7 [7] the expected responsivity of a gallium arsenide photodetector and, for comparison, a photodetector based on CNTs are reported. It is clear from the figure that the response in the UV of the CNTs/GaAs detector is due to the absorption of the CNTs in this region, to which, in
  • results obtained for the SFS. The I–V measurements under illumination evidence, in both configurations, the contribution of the responsivity of the CNTs in the UV as photoactive layer to the detector performance. Furthernore, in the vis–NIR spectral range photocurrent appears to be more field-dependent in
  • DFS b). Absolute quantum efficiency trend in the UV range, calculated at a bias voltage of −6 V for the devices SFS a) and DFS b). Responsivity trend of GaAs and CNTs based photodetectors. Normalized photocurrent spectra measured at: (a) negative voltages, (b) positive voltages applied to the ITO top
PDF
Album
Full Research Paper
Published 05 Nov 2014

Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

  • Stanislav S. Borysov,
  • Daniel Forchheimer and
  • David B. Haviland

Beilstein J. Nanotechnol. 2014, 5, 1899–1904, doi:10.3762/bjnano.5.200

Graphical Abstract
  • Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 10.3762/bjnano.5.200 Abstract We present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface
  • lever inverse responsivity, Vn is the measured voltage (corresponding to the eigencoordinate zn = αnVn, where total tip deflection is ), is the linear transfer function of a harmonic oscillator with the resonant frequency ωn and quality factor Qn, F is a nonlinear tip–surface force and fn is a drive
  • in the different detected voltages, V1 ≠ V2. In the case of small deflections, zn is proportional to Vn with some coefficient αn called optical lever inverse responsivity. The tip–surface force (Equation 6) used in the simulations. The white dashed line corresponds to a phase space trajectory of the
PDF
Album
Full Research Paper
Published 29 Oct 2014

Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

  • Jinzhang Liu,
  • Nunzio Motta and
  • Soonil Lee

Beilstein J. Nanotechnol. 2012, 3, 353–359, doi:10.3762/bjnano.3.41

Graphical Abstract
  • photodetectors based on ZnO films or nanocrystals have been reported. It has been demonstrated that ZnO nanowires have high internal photoconduction gain and much stronger responsivity under UV-light illumination compared to the bulk film [3]. The UV photoresponse mechanism of ZnO nanowires is dominated by the
  • adsorption and desorption of oxygen molecules [4]. In vacuum, ZnO nanowires show a prolonged UV photoresponse time and lowered responsivity [5]. So far, many UV photosensors have been made from ZnO one-dimensional nanostructures with various configurations, for sensing elements, such as single-nanowire
  • nanowire film can be enhanced by PDMS coating. The responsivity of the device, defined as the photocurrent per unit of incident optical power, is determined by the UV photoconductivity of the ZnO nanowires. From the I–V curves we can deduce that the PDMS coating over ZnO nanowires results in an
PDF
Album
Letter
Published 02 May 2012
Other Beilstein-Institut Open Science Activities