Search results

Search for "silicene" in Full Text gives 23 result(s) in Beilstein Journal of Nanotechnology.

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • ]. These materials play a key role both from a fundamental point of view and regarding potential applications in electronic devices, drug delivery, and energy storage and conversion, to name a few [5][6][7][8]. Layered materials range from monoelementals (i.e., graphene, silicene, germanene, or pnictogens
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • Marcin Mazdziarz Department of Computational Science, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland 10.3762/bjnano.14.48 Abstract The ability of various interatomic potentials to reproduce the properties of silicene, that is, 2D
  • single-layer silicon, polymorphs was examined. Structural and mechanical properties of flat, low-buckled, trigonal dumbbell, honeycomb dumbbell, and large honeycomb dumbbell silicene phases, were obtained using density functional theory and molecular statics calculations with Tersoff, MEAM, Stillinger
  • –Weber, EDIP, ReaxFF, COMB, and machine-learning-based interatomic potentials. A quantitative systematic comparison and a discussion of the results obtained are reported. Keywords: 2D materials; DFT; force fields; interatomic potentials; mechanical properties; silicene; Introduction We are living in
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • antimonene, silicene, and phosphorene [73][83][84]. These sheets are usually integrated with graphene and other conducting carbon nanomaterials to afford mechanical support, flexibility, and electrical conductivity, which results in high capacity values (500–2000 mAh·g−1) over at least 100 cycles [73][75][76
PDF
Album
Review
Published 09 Sep 2021

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • percent. Keywords: critical temperature; electron–phonon interaction; Li-hBN bilayer; Li-intercalated hexagonal boron nitride (Li-hBN); nonadiabatic superconductivity; vertex corrections; Introduction Low-dimensional systems such as graphene [1][2][3][4][5], silicene [6], borophene [7][8], and
PDF
Album
Full Research Paper
Published 07 Aug 2020

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • the use as field-effect transistor [1][25][26][27][28]. Different from the planar 2D materials, such as graphene and silicene, the puckered configuration of BP makes structural deformation much easier by tension or compression along any direction. Meanwhile, large-scale bandgap modulation accompanied
PDF
Album
Full Research Paper
Published 24 Sep 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • [11]. Polar materials were explored to trap LPSs, such as metal oxide [12][13] and metal-carbide nanoparticles [14]. Many two-dimensional (2D) materials, such as borophene [15], silicene [16], phosphorene [17], Mxene [18] and MoS2 [8], have been investigated as anchoring materials due to their large
PDF
Album
Full Research Paper
Published 26 Mar 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
  • , the segregation of Se and Te atoms through the silver or gold layers is one of the most promising alternatives for fabricating 2D selenium (selenene) and tellurium (tellurene) in a similar way that germanene and silicene were fabricated by Kurosawa et al. [29]. This is important due to unusual optical
PDF
Album
Full Research Paper
Published 21 Jan 2019

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • materials may vary and eventually be tuned by an electric field, for instance, in the case of buckled silicene and germanene [31]. There is much less information on the dielectric screening of 2D materials, which also depends on the substrate and environment. It has been calculated only for a few cases (for
  • small ε region is expanded. In general, in this yellow–orange–red region we find the first three materials in Table 1, and possibly silicene and germanene if their band gap energies were suitably enhanced. In order to estimate binding energies and Bohr radii, we assume ε ≈ 5 for the first three
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Silicene, germanene and other group IV 2D materials

  • Patrick Vogt

Beilstein J. Nanotechnol. 2018, 9, 2665–2667, doi:10.3762/bjnano.9.248

Graphical Abstract
  • Patrick Vogt Institut für Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, Chemnitz, Germany 10.3762/bjnano.9.248 Keywords: 2D materials; germanene, silicene; The discovery of graphene and its tremendous impact on scientific research has initiated the search for other elemental
  • concepts exploiting their topological properties. In recent years this search has lead to the discovery of other members of this family of 2D materials based on other group IV elements. In 2012 silicene was first synthesized under ultrahigh vacuum conditions on a silver(111) single crystal by Si molecular
  • beam epitaxy (MBE) [1][2] and at around the same time on zirconium diboride thin films grown on Si(111) substrates by Si segregation through the film [3]. The synthesis of silicene further launched an intensive search for other 2D elemental materials synthesized under ultrahigh vacuum by MBE-like
PDF
Album
Editorial
Published 10 Oct 2018

Transition from silicene monolayer to thin Si films on Ag(111): comparison between experimental data and Monte Carlo simulation

  • Alberto Curcella,
  • Romain Bernard,
  • Yves Borensztein,
  • Silvia Pandolfi and
  • Geoffroy Prévot

Beilstein J. Nanotechnol. 2018, 9, 48–56, doi:10.3762/bjnano.9.7

Graphical Abstract
  • regime where multilayer silicene has been claimed to form (470–500 K), a good agreement is found with AES intensity variations and STM measurements within a Ag surfactant mediated growth, whereas a model with multilayer silicene growth fails to reproduce the AES measurements. Keywords: Auger electron
  • spectroscopy; scanning tunneling microscopy; silicene; silicon; silver; Introduction Since their discovery in 2012 [1], silicene layers have been attracting a great interest, due to the expectation of electronic properties similar to the ones of graphene, based on theoretical studies [2]. Because of their
  • Å has been precisely measured for the (4 × 4) structure [8][9][10]. Silicene growth has also been reported on other substrates, such as Ir [11], ZrB2 [12], or MoS2 [13], although the precise crystallographic structure of these layers has not been elucidated yet. In spite of its atomic structure
PDF
Album
Full Research Paper
Published 05 Jan 2018

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • . (Adv. Mater. 2014, 26, 2096–2101) that silicon forms a highly strained epitaxial layer on MoS2. Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable. Keywords: intercalation; molybdenum disulfide; scanning tunneling microscopy; silicene; two
  • -dimensional materials; Introduction Since the discovery of graphene [1][2][3][4] interest has extended to the search for other 2D materials with properties similar to graphene. One appealing candidate is silicene, a graphene-like 2D allotrope of silicon. The first calculations of graphite-like allotropes of
  • -dimensional sheet. In addition, the calculations of Takeda and Shiraishi [5] also revealed that silicene and germanene are semi-metals, like graphene. In 2007, Guzmán-Verri and Lew Yan Voon [6] performed tight-binding calculations of two-dimensional silicon. They pointed out that the graphite-like silicon
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Coexistence of strongly buckled germanene phases on Al(111)

  • Weimin Wang and
  • Roger I. G. Uhrberg

Beilstein J. Nanotechnol. 2017, 8, 1946–1951, doi:10.3762/bjnano.8.195

Graphical Abstract
  • -like structures formed by the group IV atoms Si, Ge and Sn, i.e., silicene, germanene and stanene. However, Si, Ge, and Sn atoms prefer sp3 hybridization, resulting in a buckled honeycomb structure with a mixture of sp2-sp3 character [1][2][3]. As a result, the spin-orbital coupling is enlarged and the
  • silicene” on Pt(111). Based on their theoretical calculation, they believed that a Si3Pt surface alloy was formed that resembles a twisted kagome lattice. By an extension of their interpretation, they suggested that the (√19×√19) superstructure of Ge on Pt(111) in [8] is also a surface alloy composed of
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2017

Structural model of silicene-like nanoribbons on a Pb-reconstructed Si(111) surface

  • Agnieszka Stępniak-Dybala and
  • Mariusz Krawiec

Beilstein J. Nanotechnol. 2017, 8, 1836–1843, doi:10.3762/bjnano.8.185

Graphical Abstract
  • Agnieszka Stepniak-Dybala Mariusz Krawiec Institute of Physics, M. Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland 10.3762/bjnano.8.185 Abstract A structural model of the recently observed silicene-like nanoribbons on a Pb-induced √3 × √3 reconstructed Si(111
  • , and suppress the nanoribbon–substrate interaction. The proposed structural model reproduces well all the experimental findings. Keywords: density functional theory (DFT); scanning tunneling microscopy (STM); silicene; Si nanoribbons; Introduction The discovery of the exotic nature of graphene [1][2
  • ] has stimulated a growing interest in similar materials with a two-dimensional (2D) honeycomb geometry, mainly composed of group-IV elements [3][4][5][6]. In particular silicene, a silicon counterpart of graphene, has attracted increasing attention due to its compatibility with existing semiconductor
PDF
Album
Full Research Paper
Published 05 Sep 2017

α-Silicene as oxidation-resistant ultra-thin coating material

  • Ali Kandemir,
  • Fadil Iyikanat,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1808–1814, doi:10.3762/bjnano.8.182

Graphical Abstract
  • , Izmir, Turkey ICTP-ECAR Eurasian Center for Advanced Research, Izmir Institute of Technology, 35430, Izmir, Turkey 10.3762/bjnano.8.182 Abstract By performing density functional theory (DFT)-based calculations, the performance of α-silicene as oxidation-resistant coating on Ag(111) surface is
  • investigated. First of all, it is shown that the Ag(111) surface is quite reactive against O atoms and O2 molecules. It is known that when single-layer silicene is formed on the Ag(111) surface, the 3 × 3-reconstructed phase, α-silicene, is the ground state. Our investigation reveals that as a coating layer, α
  • -silicene (i) strongly absorbs single O atoms and (ii) absorbs O2 molecules by breaking the strong O–O bond. (iii) Even the hollow sites, which are found to be most favorable penetration path for oxygens, serves as high-energy oxidation barrier, and (iv) α-silicene becomes more protective and less permeable
PDF
Album
Full Research Paper
Published 31 Aug 2017

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
  • single-layer α- and β-silicene on a Ag(111) surface. It is found that a Li atom binds strongly on the surfaces of both α- and β-silicene, and it forms an ionic bond through the transfer of charge from the adsorbed atom to the surface. The binding energies of a Li atom on these surfaces are very similar
  • . However, the diffusion barrier of a Li atom on H-α-Si is much higher than that on H-β-Si. The energy surface calculations show that a Li atom does not prefer to bind in the vicinity of the hydrogenated upper-Si atoms. Strong interaction between Li atoms and hydrogenated silicene phases and low diffusion
  • barriers show that α- and β-silicene are promising platforms for Li-storage applications. Keywords: density functional theory; diffusion; Li atom; silicene; ultra-thin materials; Introduction Following the first synthesis of graphene, the family of two-dimensional (2D) materials have drawn extraordinary
PDF
Album
Full Research Paper
Published 23 Aug 2017

Transport characteristics of a silicene nanoribbon on Ag(110)

  • Ryoichi Hiraoka,
  • Chun-Liang Lin,
  • Kotaro Nakamura,
  • Ryo Nagao,
  • Maki Kawai,
  • Ryuichi Arafune and
  • Noriaki Takagi

Beilstein J. Nanotechnol. 2017, 8, 1699–1704, doi:10.3762/bjnano.8.170

Graphical Abstract
  • Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 304-0044, Japan 10.3762/bjnano.8.170 Abstract We present the transport characteristics of individual silicene nanoribbons (SiNRs) grown on Ag(110). By lifting up a single SiNR with a low-temperature scanning tunneling microscope tip, a
  • discuss the origin of the peak as it relates to the SiNR. Keywords: nanojunction; nanoribbon; scanning tunnelling microscopy; silicene; transport; Introduction The electronic transport characteristics of nanomaterials from a single molecule, nanowires, nanotubes, and nanoribbons to two-dimensional (2D
  • ) atomic sheets have garnered much attention from fundamental and application points of view [1][2][3][4][5][6][7]. Silicene, a single-atom-thick honeycomb layer consisting of Si atoms, is one of such promising materials [8][9][10][11][12][13]. Freestanding silicene hosts the Dirac electronic system and
PDF
Album
Full Research Paper
Published 16 Aug 2017

Nanostructures for sensors, electronics, energy and environment III

  • Nunzio Motta

Beilstein J. Nanotechnol. 2017, 8, 1530–1531, doi:10.3762/bjnano.8.154

Graphical Abstract
  • ., silicene, phosphorene, transition metal dichalcogenides, MXenes), which now number more than 6,000. The topic of nanoparticles is the focus of this Thematic Series, the use of which spans from biosensing to gas detection and from removing pollutants from water to new generations of solar cells. The
PDF
Editorial
Published 27 Jul 2017

Comprehensive Raman study of epitaxial silicene-related phases on Ag(111)

  • Dmytro Solonenko,
  • Ovidiu D. Gordan,
  • Guy Le Lay,
  • Dietrich R. T. Zahn and
  • Patrick Vogt

Beilstein J. Nanotechnol. 2017, 8, 1357–1365, doi:10.3762/bjnano.8.137

Graphical Abstract
  • properties of epitaxial silicene and two-dimensional (2D) Si structures on the silver(111) surface aims for a better understanding of the structural differences and of the simplification of the seemingly complex phase diagrams reported over the last years. The spectral signatures of the main silicene phases
  • epitaxially grown on Ag(111) were obtained using in situ Raman spectroscopy. Due to the obvious 2D nature of various epitaxial silicene structures, their fingerprints consist of similar sets of Raman modes. The reduced phase diagram also includes other Si phases, such as amorphous and crystalline silicon
  • , which emerge on the Ag surface at low and high preparation temperatures, respectively. The Raman signatures obtained along with their interpretations provide the referential basis for further studies and for potential applications of epitaxial silicene. Keywords: epitaxial silicene; in situ Raman
PDF
Album
Full Research Paper
Published 03 Jul 2017

3D continuum phonon model for group-IV 2D materials

  • Morten Willatzen,
  • Lok C. Lew Yan Voon,
  • Appala Naidu Gandi and
  • Udo Schwingenschlögl

Beilstein J. Nanotechnol. 2017, 8, 1345–1356, doi:10.3762/bjnano.8.136

Graphical Abstract
  • molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of
  • the long-wavelength modes to density-functional results is included. Keywords: graphene; molybdenum disulfide; phonon; silicene; two-dimensional materials; Introduction Phonon spectra in two-dimensional (2D) nanomaterials have almost exclusively been computed using density-functional theory (DFT
  • ) based codes. One of the earliest applications to group-IV elemental 2D materials was for the important prediction of the stability of silicene and germanene [1]. These are complex calculations and prone to qualitative errors due to the various approximations such as convergence criteria and use of
PDF
Album
Full Research Paper
Published 30 Jun 2017

Calculations of helium separation via uniform pores of stanene-based membranes

  • Guoping Gao,
  • Yan Jiao,
  • Yalong Jiao,
  • Fengxian Ma,
  • Liangzhi Kou and
  • Aijun Du

Beilstein J. Nanotechnol. 2015, 6, 2470–2476, doi:10.3762/bjnano.6.256

Graphical Abstract
  • purification. Traditional 2D membranes such as graphene and silicene are known to be impermeable to helium due to their small pores. In order to enhance the helium separation performance, defects are introduced in graphene and silicone [11][12][13]. However, obtaining precise and controllable defect sizes on
  • graphene and silicene remains an experimental challenge [10]. Other single atom thick, 2D membranes, such as pristine g-C3N4 and graphdiyne, have been reported for hydrogen purification but are not suitable for helium separation due to their large pores [8]. Therefore, the development of new, pristine, two
  • -dimension materials with an ideal pore size is desired for helium separation. As a new member of the family of layered materials following graphene, silicene and germanene, 2D stanene has been recently successfully fabricated by molecular beam epitaxy [14]. 2D stanene possesses a graphene-like honeycomb
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2015

Self-assembly of nanostructures and nanomaterials

  • Isabelle Berbezier and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 1397–1398, doi:10.3762/bjnano.6.144

Graphical Abstract
  • , quantum properties and applications of nanoscale assemblies to advanced devices. The main topics of interest involve 2D nanomaterials such as nanomembranes, graphene, silicene and ordered mesoporous oxides, 1D nanomaterials such as nanowires and nanotubes, and 0D nanomaterials such as quantum dots
PDF
Editorial
Published 24 Jun 2015

Designing magnetic superlattices that are composed of single domain nanomagnets

  • Derek M. Forrester,
  • Feodor V. Kusmartsev and
  • Endre Kovács

Beilstein J. Nanotechnol. 2014, 5, 956–963, doi:10.3762/bjnano.5.109

Graphical Abstract
  • observed. This may shed light on the complexity of the behavior of these unique and extremely interesting magnetic systems. Also, hybrid structures of ferromagnetic superlattices, combined with two-dimensional materials such as graphene and silicene have the potential to revolutionize spin-injection and
PDF
Album
Full Research Paper
Published 03 Jul 2014

Many-body effects in semiconducting single-wall silicon nanotubes

  • Wei Wei and
  • Timo Jacob

Beilstein J. Nanotechnol. 2014, 5, 19–25, doi:10.3762/bjnano.5.2

Graphical Abstract
  • emphasized. The analogue of graphene but with Si instead of C is two-dimensional silicene, for which many efforts have been made to synthesize this material [53][54]. In silicene, massless Dirac fermions, as in graphene, have been demonstrated, and thus silicene holds a substantial promise for future
  • applications in nanoelectronics. Because of the presence of two-dimensional silicene, the synthesis of one-dimensional SiNTs is waiting for its realization. It has been discussed that the extra cost to produce SiNTs from silicene is of the same order of the equivalent cost in carbon [1]. In silicene, the
  • sp2–sp3 hybridization in silicene. In Figure 3b, a strong mixture of the π* states and σ* states exists in the tubes forming a ring-like distribution due to the curvature effects. In addition, one can see where the electrons are excited (with holes left). In Figure 4, optical absorption spectra of
PDF
Album
Full Research Paper
Published 06 Jan 2014
Other Beilstein-Institut Open Science Activities