Search results

Search for "slip" in Full Text gives 91 result(s) in Beilstein Journal of Nanotechnology.

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • G' value of DPNR/GO could be explained by thin and large surface GO layers. The GO sheet could not withstand large shearing force, causing the rubber particles to slip. The high G' value of DPNR/GO-VTES(a) and DPNR/GO-VTES(b) may be due to hard silica particles, which may contribute to higher energy
PDF
Album
Full Research Paper
Published 05 Feb 2024

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • function for biomimetic air retaining surfaces is drag reduction. If an air layer is mounted between a solid surface and water flowing over this surface, the air layer serves as slip agent [26][27][28]. Such a drag reducing coverage allows significant friction reduction (up to 30%) in applications, where
PDF
Album
Full Research Paper
Published 21 Nov 2022

Bending and punching characteristics of aluminum sheets using the quasi-continuum method

  • Man-Ping Chang,
  • Shang-Jui Lin and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2022, 13, 1303–1315, doi:10.3762/bjnano.13.108

Graphical Abstract
  • oscillation exists in the curve from the punch contacts with the workpiece to the workpiece fracture. This oscillation expresses the stick–slip phenomenon, which commonly occurs in the atomic-scale friction [14][61][62]. The stick phenomenon is caused by the accumulation of atoms in front of the punch, and
  • the adhesion force increases with an increase of the contact area between the punch and the workpiece. However, when the debris crumple, the slip phenomenon appears [61]. Besides, comparing the three crystal orientation curves, O1 shows a more stable curve during the loading process, while the O2 and
  • orientation, the atoms slip along the [110] direction, which is parallel to the punching direction and thus has a relatively lower resistance during the punching process. Therefore, the stress–displacement curve of O1 presents a relatively stable appearance. By contrast, the atoms slip directions of O2 and O3
PDF
Album
Full Research Paper
Published 10 Nov 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • inside a z-positioning unit, permitting the approach of the tip to the sample. Typically, shear piezo stacks are activated with a triangular voltage-versus-time signal to obtain a stick–slip motion of the slider of the positioning unit. In most instruments, the shear piezo stacks are mounted on the
  • to be sufficiently large to obtain a good mechanical rigidity of the slider while still permitting a stick–slip motion of the slider. In a cantilever-based AFM, the deflection sensor (here a cleaved fiber end) must be positioned relative to the cantilever. Scanning the cantilever tip would be
PDF
Album
Full Research Paper
Published 11 Oct 2022

Nanoscale friction and wear of a polymer coated with graphene

  • Robin Vacher and
  • Astrid S. de Wijn

Beilstein J. Nanotechnol. 2022, 13, 63–73, doi:10.3762/bjnano.13.4

Graphical Abstract
  • load for two different tip sizes (radius of 50 and 100 Å) in Figure 11. We observe a regular stick–slip motion. The distance between sticks corresponds to one lattice period of graphene. We observe in Figure 10 that for the highest loads the frictional force increases during sliding. This may be due to
PDF
Album
Full Research Paper
Published 14 Jan 2022

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • Development, Zhongyuan Oilfield Company, SINOPEC, Puyang 457001, China 10.3762/bjnano.12.91 Abstract The slip boundary condition for nanoflows is a key component of nanohydrodynamics theory, and can play a significant role in the design and fabrication of nanofluidic devices. In this review, focused on the
  • slip boundary conditions for nanoconfined liquid flows, we firstly summarize some basic concepts about slip length including its definition and categories. Then, the effects of different interfacial properties on slip length are analyzed. On strong hydrophilic surfaces, a negative slip length exists
  • and varies with the external driving force. In addition, depending on whether there is a true slip length, the amplitude of surface roughness has different influences on the effective slip length. The composition of surface textures, including isotropic and anisotropic textures, can also affect the
PDF
Album
Review
Published 17 Nov 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • material slip [36]. Shockley partial dislocations are formed by the separation of perfect dislocations [37]. The magnified image (M) in Figure 5d2 elucidates the formation of Shockley partial dislocations is according to the equation In addition, the relationship between the stair-rod dislocation and the
PDF
Album
Full Research Paper
Published 12 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • translation velocity was controlled by the rotation frequency and the pitch angle. The magnetic field enabled the FMSM to achieve a two-dimensional tumbling motion near the flat non-slip boundary. The magnetic gradient of the electromagnetic control system and the vertical magnetic force exerted on the FMSM
PDF
Album
Review
Published 19 Jul 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • its slip planes [39]. As expected, glass is the stiffest material and shows values of kr ≈ 0.95. Epoxy is softer/more compliant than glass with kr ≈ 0.85, overlapping with the mechanical characteristics of glass. Hence, the mechanical properties of epoxy and glass are similar, and a mechanical
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • thickness range. In contrast, tip-enhanced Raman spectroscopy measurements on edges in folded graphene flakes, 14 layers thick, show no significant strain. This indicates that layers in graphene flakes, up to 5 nm thick, can still slip to relieve stress, showing the richness of the effect in 2D systems. The
  • layered materials as it determines the interlayer slip, which is the dominant mechanism to relieve stress at van der Waals interfaces, leading to phenomena such as the change from plate-like to membrane-like shapes in graphene, hBN, and MoS2 bubbles [12] or the circumferential faceting of multi-walled
  • carbon nanotubes [13][14]. The interlayer slip is also intimately related to the dependence of κ on the thickness or the number of layers of a 2D material, which, in the case of very thin 2D materials, may be very different from that obtained from classical theories [12]. The quantification and
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Superconductor–insulator transition in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2020, 11, 1402–1408, doi:10.3762/bjnano.11.124

Graphical Abstract
  • example, for possible realization of superconducting qubits [13]. Such effects were investigated theoretically [14] and observed experimentally [15][16]. Each quantum phase slip generates sound-like plasma modes [17] which propagate along the wire and interact with other QPSs. The exchange of such Mooij
PDF
Album
Full Research Paper
Published 14 Sep 2020

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • Makinde [27] investigated the effect of slip and convective boundary conditions on a MHD stagnation point flow, considering heat transfer due to a Casson nanofluid passing over a stretching sheet. Moreover, the flow analysis of nanofluids passing over radially stretched surfaces have many applications in
PDF
Album
Full Research Paper
Published 02 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • relative to the sample and the ion beam, the AFM is mounted onto a coarse stage consisting of a custom-built XY stick–slip positioner, which in turn is attached to a vertical approach mechanism built around a linear, stick–slip piezo actuator (PicomotorTM 8301-UHV, Newport Corporation, CA, USA). The AFM
  • ) and a stick–slip controller (8742-4 PicomotorTM drive, Newport Corporation). The AFM can operate in contact mode and in an off-resonance mode based on force–distance curves [24]. In this off-resonance mode, which we refer to as off-resonance tapping (ORT), the cantilever is moved sinusoidally up and
PDF
Album
Full Research Paper
Published 26 Aug 2020

Effect of magnetic field, heat generation and absorption on nanofluid flow over a nonlinear stretching sheet

  • Santoshi Misra and
  • Govardhan Kamatam

Beilstein J. Nanotechnol. 2020, 11, 976–990, doi:10.3762/bjnano.11.82

Graphical Abstract
  • given surface temperature and partial slip. The highly nonlinear governing equations are solved numerically using similarity transformations with suitable boundary conditions and converted to ordinary differential equations. A computational model is setup using FORTRAN, where a relevant Adam’s predictor
  • slip conditions for the boundary layer flow to investigate the velocity, temperature and concentration changes with regard to various dimensionless parameters in the fluid flow under the influence of a magnetic field. Besthapu and Bandari [10] have analysed the heat and mass transfer rates using Casson
  • slip, the present research incorporates the magnetic field effect and heat generation/absorption coefficient into the velocity, temperature and concentration profiles. Given that the end product is proportional to the heat transfer rate, the most frequent topic of boundary layer flow is the heat
PDF
Album
Full Research Paper
Published 02 Jul 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • field, the low current bias dynamic resistance can reach values of ≈1011 Ω. It was demonstrated that the system can provide a decent quality current biasing circuit, enabling the observation of Coulomb blockade and Bloch oscillations in ultra-narrow Ti nanowires associated with the quantum phase-slip
  • effect. Keywords: dynamic resistance; Josephson junction array; nanoelectronics; quantum phase slip; superconductivity; Ti nanowires; Introduction The field of modern nanoelectronics is facing stagnation with respect to further miniaturization, deviating from Moore’s law [1]. Typically, two main reason
  • ), including superconducting systems based on the Josephson effect. It has been shown that physics behind a Josephson junction (JJ) is dual to a quantum phase-slip junction (QPSJ) [3], whereby the corresponding QPSJ-based qbit operation has also been demonstrated [4]. At the same time, the quantum dynamics of
PDF
Album
Full Research Paper
Published 03 Mar 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • incubated for 48 h. The cell viability was then assessed using the MTS reagent as described above. Internalization studies: Internalization of the polyplex in A549 cells was studied with Cy3 fluorophore-tagged siRNA. A549 cells at a seeding density of 105 cells/well were cultured on a cover slip in a 6-well
PDF
Album
Full Research Paper
Published 17 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • that after the grid quantity reached a certain quantity, a larger number of grids did not affect the accuracy. 462,981 cells (129 × 97 × 37) was found to be the optimum mesh size. This was used as the grid number in our case with inlet, outlet, and no-slip wall of the hydrogel channel as the boundary
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • factors on the simulation results, the calculations used the same parameter settings, and the specific conditions were set as follows: (1) The periodic boundary condition was adopted along the flow direction to guarantee the turbulent flow was fully developed. The no-slip boundary condition was adopted
PDF
Album
Full Research Paper
Published 03 Jan 2020

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • Wu et al. [27] in three-point bending tests. According to the authors, the grain orientation and grain-boundary arrangement within the NWs are responsible for their exceptional strength and brittle-like fracture. The slip directions in the grains intersect with the twin boundaries, resulting in
  • uniform structure hardening. Five-fold grain boundaries intersect with all possible slip systems restricting the motion of dislocations along any slip direction by the twin boundaries that extend to the center of the wire preventing the initiation of plastic deformation. This makes five-fold twinned NW
  • stress distributions in the NW cross-section near the fixed end at loading rate of 0.05A/ps is shown in Figure S3 in Supporting Information File 1. In rare cases the slip of dislocations across the twin boundary was observed (Figure S4). This is due to the fact that the corners of the NW are preferential
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration

  • Nashrawan Lababidi,
  • Valentin Sigal,
  • Aljoscha Koenneke,
  • Konrad Schwarzkopf,
  • Andreas Manz and
  • Marc Schneider

Beilstein J. Nanotechnol. 2019, 10, 2280–2293, doi:10.3762/bjnano.10.220

Graphical Abstract
  • mucus without air bubbles was labelled with 1 µL of AlexaFluor-wheat germ agglutinin. Afterwards, the stained mucus was placed in an imaging chamber made by nail polish on a cover slip resulting in an equally thick mucus layer [55]. At time zero, PLGA NPs were added on top of the mucus and z-stacks
PDF
Album
Full Research Paper
Published 19 Nov 2019

Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube

  • Mandula Buren,
  • Yongjun Jian,
  • Yingchun Zhao,
  • Long Chang and
  • Quansheng Liu

Beilstein J. Nanotechnol. 2019, 10, 1628–1635, doi:10.3762/bjnano.10.158

Graphical Abstract
  • Economics, Hohhot, China 10.3762/bjnano.10.158 Abstract Time-periodic pressure-driven slip flow and electrokinetic energy conversion efficiency in a nanotube are studied analytically. The slip length depends on the surface charge density. Electric potential, velocity and streaming electric field are
  • obtained analytically under the Debye–Hückel approximation. The electrokinetic energy conversion efficiency is computed using these results. The effects of surface charge-dependent slip and electroviscous effect on velocity and electrokinetic energy conversion efficiency are discussed. The main results
  • show that the velocity amplitude and the electrokinetic energy conversion efficiency of the surface charge-dependent slip flow are reduced compared with those of the surface charge-independent slip flow. Keywords: electroviscous effect; energy conversion; nanofluidics; streaming potential; surface
PDF
Album
Full Research Paper
Published 06 Aug 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • electrolyte ions are bound as point charges, i.e., no charge distribution was considered. In the previous study a slip plane parameter was required to model the zeta potential [48]. In the present study, we were interested to see to what extent this parameter would change with the presence of the surfactant
  • molecules and whether a constant slip plane parameter would allow the data to be described with different total surfactant concentrations. The final model nicely fits the experimental zeta potential data. In particular, when the total concentration of the surfactants are changed, the model describes the
  • affinity for the nanowires. The binding of the 12-2-12 is clearly stronger. Interestingly, compared to the "ideal" slip plane parameter in the absence of surfactant, the slip plane distance is smaller by about 50% on average. If the slip plane in the absence of surfactant were to be mechanistically
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • of geometry on friction forces on glass On the glass substrate, force–time plots of friction force (Figure 6) show that static friction (peak at phase V in Figure 6) is dominant over dynamic friction. Some sort of zigzag was typically visible in the dynamic friction regime, indicating stick-slip-like
  • , medium-sized) was filled with demineralized water, and the microscopic glass slide was partially immersed for 20 mm in the bath in vertical direction. A plasma-treated glass cover slip was placed in the filled trough against one of the barriers in a diagonal orientation. The particle dispersion was added
  • dropwise via the glass cover slip. Particles were added until a nearly packed monolayer was observed. Surface pressure was measured using a Wilhelmy plate. After complete evaporation of the ethanol was achieved, as confirmed by stabilization of the surface pressure, the monolayer was compressed by moving
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • smooth surfaces, possibly being connected to the improved yield stress and slip resistance in this species. On the other hand, under certain conditions, more viscous fluids might also be able to reduce friction (e.g., because of reduced wetting properties). Hence, our conclusion remains a matter of
PDF
Album
Full Research Paper
Published 04 Jan 2019

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • starvation [27]. This dislocation starvation also implies that the work hardening mechanism, which is based on dislocation interactions, is not active. However, current literature suggests that the active deformation mechanism in npAu is dislocation slip [28] and that dislocation starvation is not effective
PDF
Album
Full Research Paper
Published 10 Dec 2018
Other Beilstein-Institut Open Science Activities