Search results

Search for "spin" in Full Text gives 537 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • contact electrodes [25][26], or intermediate layer [27], and can greatly improve the life cycles of switches. However, CNTs prepared by CVD are randomly oriented, and positioning CNTs at the desired location is a challenge that hinders scalable manufacturing. Ward et al. [28] and Cha et al. [21] used spin
PDF
Album
Review
Published 12 Apr 2022

Controllable two- and three-state magnetization switching in single-layer epitaxial Pd1−xFex films and an epitaxial Pd0.92Fe0.08/Ag/Pd0.96Fe0.04 heterostructure

  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Gulnaz F. Gizzatullina,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2022, 13, 334–343, doi:10.3762/bjnano.13.28

Graphical Abstract
  • works, and [4][5] for very recent papers), and superconductive spin valves (SSVs) [6][7][8][9]. The key points of the underlying physics are non-uniform magnetic configurations in the system that mix singlet and triplet superconducting pairing channels. As a result, at collinear magnetic configurations
  • , short-range singlet and zero-spin-projection triplet pairings carry the Josephson supercurrent in MJJs. At non-collinear magnetic configurations, on the contrary, long-range equal-spin pairings can conduct the supercurrent in MJJs with much thicker or long narrow weak links. This gives additional
  • degrees of freedom to control the critical current of MJJs [10] or SSVs [6], or current–phase relations in MJJs [11][12]. In particular, the spin-valve structure embedded into a MJJ can serve as an actuator for switching the MJJ between critical current modes or flipping its current–phase relation, thus
PDF
Album
Full Research Paper
Published 30 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • transitions using the Tauc method. Structure and elemental composition Surface properties The oxidation state of copper on the surface of (Ti0.48Cu0.52)Ox thin film was analyzed with the XPS Cu 2p core level spectrum (Figure 6). The Cu 2p core level has split spin–orbit components with ΔBE of 19.8 eV and an
PDF
Album
Full Research Paper
Published 24 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • vibrational frequencies were calculated at the same level of theory. They were confirmed to be positive and were used to derive zero-point vibrational energy and thermal energy corrections. Potential alternate spin states were investigated in order to make sure that the lowest energy state was indeed
PDF
Album
Full Research Paper
Published 04 Feb 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • experiments or high-level computations with the consideration of non-local effects and spin–orbit coupling. However, the changing trend of the electronic properties caused by the X anions should be the same. The -pCOHP of the TM–X bonds in 1T′ TMDs is analyzed and shown in Figure 3. The bonding and
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • reports still proposed its photocatalytic behaviors partly based on •O2− species via the combination of experimental physicochemical analyses, such as electron spin resonance (ESR) spectroscopy, active species trapping experiments, valence band X-ray photoelectron spectroscopy (XPS), and diffuse
  • density functional theory (DFT) calculations, trapping experiments, and electron spin resonance measurements (Figure 10). Thus, the impact of intrinsic OVs within SnO2 NPs and the resulting S-scheme heterojunction on the band structure, charge transfer, and photocatalytic activity was presented. The
PDF
Album
Review
Published 21 Jan 2022

Influence of magnetic domain walls on all-optical magnetic toggle switching in a ferrimagnetic GdFe film

  • Rahil Hosseinifar,
  • Evangelos Golias,
  • Ivar Kumberg,
  • Quentin Guillet,
  • Karl Frischmuth,
  • Sangeeta Thakur,
  • Mario Fix,
  • Manfred Albrecht,
  • Florian Kronast and
  • Wolfgang Kuch

Beilstein J. Nanotechnol. 2022, 13, 74–81, doi:10.3762/bjnano.13.5

Graphical Abstract
  • radiation beamtime. Funding This work was supported by the Deutsche Forschungsgemeinschaft via the CRC/TRR 227 “Ultrafast Spin Dynamics”, project A07.
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • between two materials, exhibiting particle–hole symmetry and spin–orbit interaction [8]. Among the most promising platforms to realize MZMs are semiconducting nanowires with large spin–orbit coupling [9][10][11][12] or atomic chains [13][14][15][16][17][18] in proximity to an s-wave superconductor. The
PDF
Album
Letter
Published 03 Jan 2022

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • their magnetic defects and their interactions with charge carriers. Antiferromagnetic clusters in CrGe NWs were investigated using electron spin resonance. Spin–orbit interaction between charge carriers and magnetic defects were studied [9]. Cr/Ge nanotowers as a dilute magnetic semiconductor were
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • . These included mechanical stretching [19][20], spin coating [21], quenching [22], a combination of the latter two techniques [2], and the addition of external additives to the PVDF matrix, such as metal nanocomposites [14][23], ceramic filler [24], and graphene nanoplatelets (GNPs) and their combination
  • %. After curing, the spin coated nanocomposite thin films were exposed to a DC magnetic field for 1 h at 65 °C. In Figure 3 the d33 values are reported as function of the applied DC magnetic field strength. As can be seen, the piezoelectric coefficient increases when the magnetic field is increased and
  • in the fabrication of energy harvesting devices or wearable sensors for flexible electronics applications. Experimental The PVDF-TrFe/CoFe2O4 nanocomposite thin films were produced through spin coating. The CoFe2O4 nanoparticles (Sigma-Aldrich, 99%) were dispersed in N,N-dimethylformamide (DMF, Sigma
PDF
Album
Full Research Paper
Published 19 Nov 2021

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • strength of electron–phonon interaction, the system is occupied by a different number of electrons that effectively interact with each other repulsively or attractively. This leads, together with the interference effects, to different spin or charge Fano–Kondo effects. Keywords: Fano effect; Kondo effect
  • the coherent superposition of cotunneling processes. The latter lead to effective spin flips, in consequence of which the bound singlet state of the dot spin with the electrons of the leads is formed. This resonance is characterized by SU(2) symmetry. In nanoscopic systems SU(2) Kondo effects have
  • been observed in semiconductor-based quantum dots (QDs) [1][2][3][4], in carbon nanotubes [5], and in molecular nanostructures [6][7][8][9]. Besides the spin, also other degrees of freedom, for example, orbital [10] or charge [11][12] can give rise to Kondo correlations. For systems with higher
PDF
Album
Full Research Paper
Published 12 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • spin multiplicity M = 1, 3, and 5 were considered) and a potential energy scan is then performed for Pt–P and P–F bonds to calculate equilibrium bond lengths, dissociation energies, and force constants. The parameters of the bonded and angular interactions for Pt(PF3)4 are listed in Table 1. In
PDF
Album
Full Research Paper
Published 13 Oct 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • methods, notably DRIE. Drawing lithography has been used for high aspect ratio microneedles of heights 1600, 1200, and 600 μm [80][81]. This technique involves spin coating of a viscoelastic thermosetting polymer such as SU-8 epoxy resin, followed by thermal curing and controlled drawing of the material
  • light. The resist is sprayed or spin coated onto a substrate surface for patterning and is exposed to light (usually ultraviolet) either through a contact mask or using a projection stepper, followed by wet development to form a resist pattern. This technique requires well-established photosensitive
PDF
Album
Review
Published 13 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • assemblies [23][28][60][61]. Similarly, the lack of electronic states around the Fermi level in a superconductor was used to preserve electronic properties in adsorbed molecules. For example, the spin relaxation in magnetic molecules was suppressed on a superconducting surface, which then resulted in a
  • significant enhancement of the excited-state spin lifetimes [62]. Concerning optical properties, successful decoupling made the examination of fluorescence from both single molecules and molecular assemblies feasible by tunneling electron excitation [19][63][64][65][66]. Also, sub-molecularly resolved Raman
PDF
Editorial
Published 23 Aug 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • unconventional odd-frequency spin-triplet order parameter should appear. The non-hysteretic nature of this state allows for reversible tuning of the magnetic orientation. Thus, we identify the range of parameters and the procedure for in situ control of devices based on S/F heterostructures. Keywords: cryogenic
  • computing; devices exploiting spin polarized transport or integrated magnetic field; spin-valve; superconducting multilayers; superconducting spintronics; Introduction Competition between spin-polarized ferromagnetism and spin-singlet superconductivity leads to a variety of interesting phenomena including
  • the possible generation of the odd-frequency spin-triplet order parameter [1][2][3]. In recent years, this exotic state has been extensively studied both theoretically [4][5][6][7][8][9][10][11][12][13][14][15][16][17] and experimentally [18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33
PDF
Album
Full Research Paper
Published 17 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • ROS production [149][153]. Miyaji et al. investigated the generation of free radicals from water molecules in the presence of US under aerobic conditions. 5.5-Dimethyl-1-pyroline-N-oxide was used as a trap for HO• free radicals and analyzed using electron spin resonance microscopy after sonolysis [153
PDF
Album
Review
Published 11 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • nanoparticles gain magnetization against an applied external magnetic field. Paramagnetism is caused by spin angular momentum (i.e., spin magnetic moment). Under the action of an external magnetic field, the initially disordered magnetic moments will be reoriented, thereby exhibiting paramagnetism, while other
PDF
Album
Review
Published 19 Jul 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • Ab initio Simulation Package (VASP) version 5.4 [49]. Three-dimensional boundary conditions were applied and the spin-polarized general gradient approximation (GGA) along with the Perdew–Burke–Ernzerhof (PBE) approximation to the exchange–correlation functional were used to describe the system [50
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • 2p and Zn, Ga and As 3d spin–orbit doublets were measured. The spectra were analyzed using the commercial CASA XPS software package (Casa Software Ltd, version 2.3.17) with Shirley background. The spectra were fitted with a mixed Gaussian–Lorentzian (GL(30)) function. The depth profiling was
  • data, the red lines denote the spin–orbit or orbit spectra of the main components, and the blue lines denote the additional components. The Shirley-type background is shown in magenta and the dark green line represents the best fit. (a) PL spectra (RT) of the samples of the A series. (b) PL spectra (RT
PDF
Album
Full Research Paper
Published 28 Jun 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • theoretical approaches [6]. Possible applications of STO/organic interfaces include FETs [7][8], photodiodes [9], and organic spin valves[10]. Strontium titanate is a semiconductor with an indirect band gap of 3.25 eV [11] crystallizing in a perovskite structure with cubic unit cell. The conductivity can be
  • S1–S6). All Ti 2p spectra in Figure 2 can be described by a single doublet arising from spin–orbit splitting, which can be assigned to Ti4+ ions of the substrate. The binding energy of the Ti 2p3/2 component of the pristine substrate is 459.15 eV (Figure 2a) or 458.9 eV (Figure 2b), indicating a
  • thickest FePc film in Figure 5c, which might be due to a superposition with intense high-energy-loss structures from F 1s photoemission (at about 688 eV) or a possible different spin state of Fe in both molecules [69]. In summary, there are no general differences in the interface properties of FePc and
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • ], electrical [2], and magnetic [3] properties. Low-dimensional materials have unique electronic properties that can be tuned via geometrical or structural modifications [4][5][6][7][8]. Also, the tunability of the spin degrees of freedom in semiconducting materials offers a great potential for future
  • spintronic applications. However, to achieve a reliable injection and detection of spin-polarized electrons in spintronic devices, appropriate heterostructures between semiconductors and magnetic alloys [9][10] need to be formed. Hence, a tailored growth process that preserves the injection efficiency and
  • silicides as an indispensable part of microelectronics [14][15]. In particular, the manganese germanide phase Mn5Ge3 is a semimetallic compound that has attracted attention due to its giant magnetoresistance and large spin polarization, which make it a proper candidate for spintronics applications [16][17
PDF
Album
Full Research Paper
Published 28 Apr 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • dielectric properties (e.g., SiO2 and ZnO) exhibit a dependence of the electrical resistance with temperature [22][23]. SiO2 and ZnO films are obtained by various deposition techniques, such as matrix-assisted pulsed laser evaporation (MAPLE) [24][25], spin coating of sol–gel precursor solutions [26], radio
PDF
Album
Full Research Paper
Published 19 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • with a noncollinear spin configuration, which causes the formation of a surface spin canting due to thermal fluctuation of magnetic moments. Figure 7 shows the temperature dependence of the magnetization obtained in the course of the last measurement cycle at which, for nickel particles, ferromagnetic
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • AFM experiments were performed with a JPK NanoWizard 4 by using non-contact mode. Cross-linking of SAMs into CNMs was achieved by using electron flood guns employing 100 eV electrons and an electron dose of 60 mC/cm2. Before starting the transfer process, the cross-linked CNMs were spin coated with a
  • protecting layer of PMMA with an overall thickness of ca. 400 nm. First, a layer of low-molecular-weight PMMA (35 ku), then, a layer of high-molecular-weight PMMA (996 ku) were spin cast each for 1 min at 4000 rpm and cured on a hot plate at 363 K for 5 min. The 300 nm thick silver layer was removed after
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • asymmetric magnetic interactions as in Co/Pt films, enabling the formation of desired spin textures [4]. As the actual device geometry determines the response to external stimuli, the coupling strengths, and the corresponding figures of merit, ultimate control in nanopatterning down to the single-digit
  • are available in the git repository of the FIB-o-mat package [18]. 1 Magnetic patterning of Co/Pt multilayer films Used FIB-o-mat features: high-level beam path generation with automation via stage control. Magnetic thin films and multilayers are of great technological interest as platforms for spin
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021
Other Beilstein-Institut Open Science Activities