Search results

Search for "superconductivity" in Full Text gives 63 result(s) in Beilstein Journal of Nanotechnology.

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • Vanadium has oxidation states ranging from −1 to +5. Binary vanadium oxides have already been proven as a potential material for studying superconductivity at high pressures and low-dimensional quantum-spin transitions [103]. VO2 has two crystalline phases, monoclinic and rutile. The monoclinic form of
PDF
Album
Review
Published 24 Mar 2017

Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

  • Ismael García Serrano,
  • Javier Sesé,
  • Isabel Guillamón,
  • Hermann Suderow,
  • Sebastián Vieira,
  • Manuel Ricardo Ibarra and
  • José María De Teresa

Beilstein J. Nanotechnol. 2016, 7, 1698–1708, doi:10.3762/bjnano.7.162

Graphical Abstract
  • pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current). Keywords: focused ion beam induced deposition; magnetotransport; superconductivity; vortex lattice
  • can be hindered by pinning barriers that act on vortex motion below the thermal depinning temperature, which depends on the arrangement and size of barriers. As a consequence, one of the mainstreams of research in superconductivity is to pin vortices and impede or reduce their motion [25][26][27][28
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2016

Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

  • Stefan Kolenda,
  • Peter Machon,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2016, 7, 1579–1585, doi:10.3762/bjnano.7.152

Graphical Abstract
  • in energy, while Nz is odd in energy and gives rise to the broken particle–hole symmetry of G(E) for P ≠ 0. For the fits of the experimental data shown below, N±(E) is calculated from the standard model of high-field superconductivity [24] (see Supporting Information File 1 for details). In the
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2016

Adiabatic superconducting cells for ultra-low-power artificial neural networks

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev and
  • Maxim V. Tereshonok

Beilstein J. Nanotechnol. 2016, 7, 1397–1403, doi:10.3762/bjnano.7.130

Graphical Abstract
  • . We optimize their parameters for application in three-layer perceptron and radial basis function networks. Keywords: adiabatic superconductor cells; artificial neural networks; energy efficiency; Josephson effect; superconductivity; Findings Artificial neural networks (ANNs) are famous for their
PDF
Album
Letter
Published 05 Oct 2016

Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures

  • Daniel Lenk,
  • Vladimir I. Zdravkov,
  • Jan-Michael Kehrle,
  • Günter Obermeier,
  • Aladin Ullrich,
  • Roman Morari,
  • Hans-Albrecht Krug von Nidda,
  • Claus Müller,
  • Mikhail Yu. Kupriyanov,
  • Anatolie S. Sidorenko,
  • Siegfried Horn,
  • Rafael G. Deminov,
  • Lenar R. Tagirov and
  • Reinhard Tidecks

Beilstein J. Nanotechnol. 2016, 7, 957–969, doi:10.3762/bjnano.7.88

Graphical Abstract
  • , Moscow State University, Leninskie gory, GSP-1, Moscow 119992, Russia 10.3762/bjnano.7.88 Abstract Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear
  • smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1. Keywords: heterostructures; superconducting spin valve; thin films; triplet superconductivity; Introduction Fulde and Ferrell [1], and Larkin and Ovchinnikov [2] (FFLO) predicted superconductivity on a ferromagnetic background, i.e., in
  • the presence of an exchange field. This was unexpected, because singlet superconductivity is established by pairs of electrons (Cooper pairs) with anti-parallel spin [3], but ferromagnetism leads to a parallel alignment of the electron spins. Indeed, experimental realizations of the FFLO state are
PDF
Album
Full Research Paper
Published 04 Jul 2016

Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures

  • Oleksandr V. Dobrovolskiy,
  • Maksym Kompaniiets,
  • Roland Sachser,
  • Fabrizio Porrati,
  • Christian Gspan,
  • Harald Plank and
  • Michael Huth

Beilstein J. Nanotechnol. 2015, 6, 1082–1090, doi:10.3762/bjnano.6.109

Graphical Abstract
  • vortices [9][10][11], magnetic sensing [5][12] and storage [3][4], and spin-triplet proximity-induced superconductivity [13][14][15][16][17]. This magnetization tuning has been accomplished to a very high degree by means of layered heterostructures in the vertical dimension, which can be prepared by thin
PDF
Album
Full Research Paper
Published 29 Apr 2015

Two-dimensional and tubular structures of misfit compounds: Structural and electronic properties

  • Tommy Lorenz,
  • Jan-Ole Joswig and
  • Gotthard Seifert

Beilstein J. Nanotechnol. 2014, 5, 2171–2178, doi:10.3762/bjnano.5.226

Graphical Abstract
  • performed by Auriel et al. [42] showed a highly anisotropic metallic behaviour of misfit layer compounds; some of them even showed a transition to superconductivity at temperatures less than 6 K. A small intrinsic charge transfer could explain such physical properties. However, it is quite improbable that
PDF
Album
Review
Published 19 Nov 2014

Physics, chemistry and biology of functional nanostructures II

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2014, 5, 1218–1219, doi:10.3762/bjnano.5.134

Graphical Abstract
  • current of up to 107 A/cm2. However, this critical current is only present in the MgB2 superconducting material when there is no magnetic field. The external magnetic field very rapidly suppresses the critical current and destroys the superconductivity of magnesium diboride. This issue was successfully
PDF
Editorial
Published 06 Aug 2014

Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

  • Federico Baiutti,
  • Georg Christiani and
  • Gennady Logvenov

Beilstein J. Nanotechnol. 2014, 5, 596–602, doi:10.3762/bjnano.5.70

Graphical Abstract
  • interface effects occurring in oxides heterostructures [2]. In the last decades, their study has revealed the presence of unexpected properties, such as superconductivity [3][4], metallicity [5][6] and magnetism [7], which cannot be ascribed to any of the constituent phases taken singularly. Many, sometimes
  • the composition of each atomic layer, omitting or adding single layers to a given structure, stacking layers that belong to different compounds and designing artificial and metastable multilayers. A milestone in the ALL-oxide MBE technique was represented by the study of interface superconductivity
PDF
Album
Review
Published 08 May 2014

Surface assembly and nanofabrication of 1,1,1-tris(mercaptomethyl)heptadecane on Au(111) studied with time-lapse atomic force microscopy

  • Tian Tian,
  • Burapol Singhana,
  • Lauren E. Englade-Franklin,
  • Xianglin Zhai,
  • T. Randall Lee and
  • Jayne C. Garno

Beilstein J. Nanotechnol. 2014, 5, 26–35, doi:10.3762/bjnano.5.3

Graphical Abstract
  • Tian Tian Burapol Singhana Lauren E. Englade-Franklin Xianglin Zhai T. Randall Lee Jayne C. Garno Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston
  • no. E-1320), the National Science Foundation (DMR-0906727) and the Texas Center for Superconductivity at the University of Houston. The authors thank Professor George Stanley of LSU for technical assistance with graphics.
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2014

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • precursor being present during the process. This leads on to the third section, which presents some recent results on the preparation and characterization of binary FEBID structures, with special focus on magnetism and superconductivity. The following section reviews the particular advantages that FEBID
  • the case of the parallel use of Co2(CO)8 and Me3Pt(IV)CpMe. Binary FEBID structures The parallel use of two (or more) precursors in FEBID provides access to a whole new class of functional nanostructures. FEBID structures with tailored cooperative ground states, such as superconductivity and magnetism
PDF
Album
Video
Review
Published 29 Aug 2012

P-wave Cooper pair splitting

  • Henning Soller and
  • Andreas Komnik

Beilstein J. Nanotechnol. 2012, 3, 493–500, doi:10.3762/bjnano.3.56

Graphical Abstract
  • pair splitters, that can otherwise only be realized by using p-wave superconductors. In particular, it provides access to Bell states that are different from the typical spin singlet state. Keywords: Cooper pair splitting; entanglement; Hamiltonian approach; spin-active scattering; superconductivity
  • level. P1 and P2 are the (parallel) polarizations of the ferromagnets and σ1 and σ2 are the spins of the electrons in a Cooper pair. In usual s-wave superconductivity the spin directions obey σ1 = −σ2, and we may maximize CAR by choosing P1 = 1 = −P2 (or vice versa) [10]. However, if we choose the
PDF
Album
Full Research Paper
Published 06 Jul 2012

Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields

  • Andrei E. Surdu,
  • Hussein H. Hamdeh,
  • Imad A. Al-Omari,
  • David J. Sellmyer,
  • Alexei V. Socrovisciuc,
  • Andrei A. Prepelita,
  • Ezgi T. Koparan,
  • Ekrem Yanmaz,
  • Valery V. Ryazanov,
  • Horst Hahn and
  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2011, 2, 809–813, doi:10.3762/bjnano.2.89

Graphical Abstract
  • ; magnesium diboride; nanoparticles; pinning; superconductivity; Introduction After the discovery of superconductivity in MgB2 [1], this material became attractive for researchers all over the world not only because of its special physical properties but also due to its possible technical applications. This
  • that ferromagnets strongly suppress superconductivity, and even a small ferromagnetic region can be a strong pin, as was confirmed in experiments with NbTi wires containing nanometer-sized arrays of Ni pins [9]. We placed the ferromagnetic nanoparticles on the surface, instead of in the volume of the
PDF
Album
Letter
Published 14 Dec 2011
Other Beilstein-Institut Open Science Activities