Search results

Search for "superlattice" in Full Text gives 32 result(s) in Beilstein Journal of Nanotechnology.

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • ) site of Ir(111). From STM images alone, hcp and fcc valleys cannot be distinguished, that is, the assignment in Figure 1a is tentative. In addition to the moiré superlattice, depressions with various sizes and shapes are visible, which are not present on the freshly prepared graphene surface
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • superlattice [20]. As shown in the literature [20], the frequencies of these modes depend on the twist angle (see Figure 2e in [20]). Unfortunately, these dependencies show a mirror behavior with respect to θ = 30°. This means that from given FLA and FTA positions, two values are possible: θ ∈ [0,30]° or its
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • slab as in Figure 1a is joined with the Ge slab marked with a black square in Figure 1b. A variant of such a superlattice was used to perform convergence tests described in the next section. Another way of exploiting this lattice match is to connect a Au-fcc(011) plane as shown in Figure 1c and the
  • ), rumpling parameters rGe (rAu) for interfacial Ge (Au) layers and interlayer distances at the interface (dint) calculated for different Au/Ge heterostructures as well as for the Au-fcc/Au-hcp superlattice. Surface energies calculated for various low-index planes of Ge, Au-fcc and Au-hcp crystals. For
PDF
Album
Full Research Paper
Published 15 Nov 2023

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • macropore. THF is tetrahydrofuran. (b) SEM image of SOM-ZIF-8. (c) Representative SEM images of SOM-ZIF-8. Figure 5 is from [117]. Reprinted with permission from AAAS. This content is not subject to CC BY 4.0. Schematic illustration of a superlattice assembled by DNA-functionalized UiO-66 nanoparticles
PDF
Album
Review
Published 12 Aug 2022

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • ion irradiation of crystalline materials under certain conditions is the formation of a so-called gas bubble superlattice, comprising a periodic 3D array of nanobubbles imposed onto the host lattice. This can result in so-called radiation hardening of the material, which is of particular significance
  • in the development of radiation-tolerant structural materials for deployment in nuclear fission and future nuclear fusion reactors. It has been shown that the gas bubble superlattice can be created by both broad beam or plasma exposure, as well as by repeated scanning of a selected area with the
  • focused helium ion beam of the HIM. Wang et al. used the HIM to conduct a systematic study of the effect of such a helium gas bubble superlattice on the mechanical properties of copper, which is representative of a range of fcc alloys that are known to exhibit radiation tolerance [78]. Copper nanopillar
PDF
Album
Review
Published 02 Jul 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • ]. Recently, however, Zhang et al. used STM in combination with DFT simulations to study the variation of the local work function and bandgap within the Moiré superlattice and found that the variation depends on the angle of the Moiré with respect to the substrate lattice, but inferred only marginal structure
PDF
Album
Letter
Published 17 Jun 2021

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • of 1,3,6,8-tetrakis(pyridin-4-ylethynyl)pyrene (1, tetra) on hBN/Cu(111), as imaged by STM. a) Overview image (2.0 V, 0.1 nA). The moiré pattern of the underlying hBN/Cu(111) caused site-selective gating, as reflected in the hexagonal superlattice in the image (dotted rhombus). b) High-resolution
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • We present both theoretical and experimental investigations of the proximity effect in a stack-like superconductor/ferromagnetic (S/F) superlattice, where ferromagnetic layers with different thicknesses and coercive fields are made of Co. Calculations based on the Usadel equations allow us to find
  • stacking periods. It is demonstrated that the magnetization switching results in modulation of superconductivity in the superlattice with a corresponding change in the kinetic inductance of the superconducting parts of the wire core, due to the inverse proximity effect. We argue that this effect
  • Contrary to traditional semiconductor basic elements (transistors), tunable kinetic inductors (TKIs), as well as nonlinear elements (Josephson junctions), are not fabricated in a substrate. This allows for 3D topology benefits, which are especially important for deep ANNs. The F1/s/F2/s superlattice, in
PDF
Album
Full Research Paper
Published 07 Sep 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • still possible, y ≈ 3 nm, is still two times smaller than the minimum thickness ≈ 6–8 nm of thin Nb films in which superconductivity appears [19][20]. In order to provide superconducting correlations in a Fe/Nb superlattice (SL) we propose to deposit the Fe/Nb SL on top of a thick Nb(40–50 nm) layer
  • a rather low RRR of 3.4, which is attributed to enhanced scattering of conduction electrons at the grain boundaries. Neutron reflectometry has shown that Fe/Nb superlattices with x ≤ 2.5 nm form a depth-modulated FeNb alloy with the concentration of iron varying within the superlattice unit cell
PDF
Album
Full Research Paper
Published 21 Aug 2020

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • nontoxic. It is worth noting that graphene on a hBN substrate was used to fabricate transistor devices with high mobility [35], with the help of which the quantum Hall effect was observed. A heterojunction with two graphene layers [30] and superlattice structures [36][37][38] were also constructed. The
PDF
Album
Full Research Paper
Published 07 Aug 2020

Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1−xFexAly spin-valve structure

  • Andrey Andreevich Kamashev,
  • Nadir Nurgayazovich Garif’yanov,
  • Aidar Azatovich Validov,
  • Joachim Schumann,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Yakov Victorovich Fominov and
  • Ilgiz Abdulsamatovich Garifullin

Beilstein J. Nanotechnol. 2019, 10, 1458–1463, doi:10.3762/bjnano.10.144

Graphical Abstract
  • heterostructure, as proposed by Oh et al., with ΔTc = 19 mK and δTc ≈ 7 mK [10]. That the F1/F2/S structure is indeed beneficial in achieving the full SSV effect was previously indicated by the results in [11], in which possible values of ΔTc≈ 200 mK in the superlattice [Fe2V11]20 was obtained indirectly. Another
PDF
Album
Letter
Published 19 Jul 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • InGaAs/GaAs-on-GaAs superlattice as a SA to realize 1557 nm, 1.2 ps, transformation-limited pulse generation [9]. Following this, carbon nanotubes (CNTs), graphene, topological insulators (TIs), transition metal disulfides (TMDs) and black phosphorus (BP) were used as SAs to realize passively mode-locked
PDF
Album
Full Research Paper
Published 20 May 2019

Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy

  • Julian J. Brunner,
  • Marina Krumova,
  • Helmut Cölfen and
  • Elena V. Sturm (née Rosseeva)

Beilstein J. Nanotechnol. 2019, 10, 894–900, doi:10.3762/bjnano.10.90

Graphical Abstract
  • symmetry of packing arrangement and orientational order in 2D and 3D superlattices. The 3D structures of the self-assembled nanocubes can be approximated by a slightly distorted fcc superlattice, thereby the texture-like wide-angle diffraction pattern indicates the formation of mesocrystals with a
  • preferred orientational order of nanoparticles. The orientational order of nanoparticles within the superlattice (SL) can be described as follows: [001]SL || [310]magnetite, [001]SL || [301]magnetite, [001]SL || [100]magnetite [13]. This study is a continuation of our research on iron oxide mesocrystals and
  • (Figure 3a, inset) or c2mm (Figure 3c, inset) plane groups. The ED patterns (Figure 3b,d) indicate the preferred crystallographic orientation of the nanocrystals within the superlattice, which is necessary to classify the directed colloidal crystals as mesocrystals (type I) [13][19]. However, the
PDF
Album
Letter
Published 17 Apr 2019

Periodic Co/Nb pseudo spin valve for cryogenic memory

  • Nikolay Klenov,
  • Yury Khaydukov,
  • Sergey Bakurskiy,
  • Roman Morari,
  • Igor Soloviev,
  • Vladimir Boian,
  • Thomas Keller,
  • Mikhail Kupriyanov,
  • Anatoli Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2019, 10, 833–839, doi:10.3762/bjnano.10.83

Graphical Abstract
  • the feasibility of controllable switching between AP and P states through the whole periodic structure, we prepared a superlattice [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)]6 between two superconducting layers of Nb(25 nm). Neutron scattering and magnetometry data showed that parallel and antiparallel
  • with the superlattice in the weak link region. The use of a multilayer structure has several advantages. Thanks to the collective effect of maintaining the superconducting state in the spacers, it is possible to use thinner layers. The thinning of the layers should be accompanied by a decrease in the
  • , and (c) ability for coherent switching between P and AP configurations through the whole stack. The goal of this paper is to demonstrate that the requirements can be met when using a combination of Nb and Co as materials for the superlattice. To do this we fabricated a Nb(25 nm)/[Co(1.5 nm)/Nb(8 nm
PDF
Album
Letter
Published 09 Apr 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • superlattices on graphite by imaging a live transition from one superlattice to another with concurrent and direct measurement of the orientation angle before and after rotation using scanning tunneling microscopy (STM). This has been possible due to a fortuitous observation of a superlattice on a nanometer
  • sufficient to account for the total expenditure of energy involved in the process. Keywords: capillary force; graphene; graphite; HOPG; moiré; solid–liquid interface; STM; superlattice; Introduction Graphite is a layered material with graphene sheets arranged in ABAB stacking. HOPG is an ordered form of
  • of altering the superlattice on the flake. The change in the superlattice periodicity is then used to validate the moiré origin of the superlattices. We also describe the theory behind the plausible cause of the rotation of the flake based on a more “realistic” meniscus pertinent to the situation of
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Pinning of a ferroelectric Bloch wall at a paraelectric layer

  • Vilgelmina Stepkova and
  • Jiří Hlinka

Beilstein J. Nanotechnol. 2018, 9, 2356–2360, doi:10.3762/bjnano.9.220

Graphical Abstract
  • . Therefore, we have considered a hypothetical BaTiO3–SrTiO3 crystalline superlattice, formed by thin SrTiO3 paraelectric layers of 0.5–3 nm thickness, separated by about 13 nm thick BaTiO3 ferroelectric slabs (see Figure 1). The SrTiO3 layers were normal to the crystallographic direction, common to the
  • -containing superlattice layers as shown in Figure 5. When the domain wall is far away from the SrTiO3 layer, the domain wall profile is barely modified, only the spontaneous polarization in the domain is somewhat reduced (by about 40%, see Figure 5a). In contrast, when the domain wall happens to be located
  • needed to drive BaTiO3 into the rhombohedral ferroelectric phase). Phase-field simulations for pure BaTiO3 single crystal and for the BaTiO3–SrTiO3 crystalline superlattice at stress-free mechanical conditions were performed using the phase-field simulation code ferrodo [8]. The approximate profile of
PDF
Album
Full Research Paper
Published 31 Aug 2018

Increasing the performance of a superconducting spin valve using a Heusler alloy

  • Andrey A. Kamashev,
  • Aidar A. Validov,
  • Joachim Schumann,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2018, 9, 1764–1769, doi:10.3762/bjnano.9.167

Graphical Abstract
  • in a practical realization of an SSV, i.e., to obtain a difference between larger than the width δTc of the superconducting transition for a given configuration of M1 and M2, was not overcome in these works. One should note that the reported antiferromagnetically coupled [Fe/V]n superlattice [10] in
PDF
Album
Supp Info
Letter
Published 12 Jun 2018

Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride

  • Daniel Hiller,
  • Julian López-Vidrier,
  • Keita Nomoto,
  • Michael Wahl,
  • Wolfgang Bock,
  • Tomáš Chlouba,
  • František Trojánek,
  • Sebastian Gutsch,
  • Margit Zacharias,
  • Dirk König,
  • Petr Malý and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2018, 9, 1501–1511, doi:10.3762/bjnano.9.141

Graphical Abstract
  • . The reason for using two nominally identical reference samples (both are undoped SRO) in PL is due to the different number of NC-layers in the superlattice (10 for SRO:P and 20 for SRO:B). Any differences between the reference samples might therefore be interpreted as the scattering amplitude between
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Changes of the absorption cross section of Si nanocrystals with temperature and distance

  • Michael Greben,
  • Petro Khoroshyy,
  • Sebastian Gutsch,
  • Daniel Hiller,
  • Margit Zacharias and
  • Jan Valenta

Beilstein J. Nanotechnol. 2017, 8, 2315–2323, doi:10.3762/bjnano.8.231

Graphical Abstract
  • displays [3]. A device fabrication process demands an effective control of size, shape and density of Si NCs. All those requirements can be met via the superlattice approach in combination [4] with the phase-separation of sub-stoichiometric oxides (SiOx) where the NC spacing in all three dimensions can be
  • of silicon-rich silicon oxynitride (SRON: SiOxNy) with 4.5 nm thickness and of stoichiometric SiO2 (1, 1.6, 2.2 or 2.8 nm thick) on fused silica substrates by plasma-enhanced chemical vapor deposition (PECVD). On top and below the superlattice stack, 10 nm of SiO2 were deposited as a buffer and
PDF
Album
Full Research Paper
Published 06 Nov 2017

Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: a comparative study

  • Veronique Dupuis,
  • Anthony Robert,
  • Arnaud Hillion,
  • Ghassan Khadra,
  • Nils Blanc,
  • Damien Le Roy,
  • Florent Tournus,
  • Clement Albin,
  • Olivier Boisron and
  • Alexandre Tamion

Beilstein J. Nanotechnol. 2016, 7, 1850–1860, doi:10.3762/bjnano.7.177

Graphical Abstract
  • (main reflection, with even h + k + l value for the sum of Miller indices, as in bcc structures) and at fA − fB (secondary or superlattice reflection, only for B2 structures with odd h + k + l values related to the atomic number difference ΔZAB for X-rays and electrons). The supplementary reflections
  • nanoparticles (ΔZFeRh = 19), the CsCl-type (B2) phase signature, in red in Figure 5a, should be identifiable in our range size for FeRh nanoparticles but progressively vanishes as the size decreases. While in the case of FeCo, it should be impossible to extract the superlattice reflection peaks for small
PDF
Album
Full Research Paper
Published 28 Nov 2016

Enhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions

  • Michael Paßens,
  • Rainer Waser and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2015, 6, 1421–1431, doi:10.3762/bjnano.6.147

Graphical Abstract
  • ° superlattice formed by fullerenes adopting 11 different orientations and it could be shown that intermolecular interactions play a major role in stabilizing this structure [12]. Another interesting fact is that fullerenes with two different apparent heights in STM images, usually referred as “bright” and “dim
PDF
Album
Full Research Paper
Published 29 Jun 2015

Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

  • Sebastian Gutsch,
  • Daniel Hiller,
  • Jan Laube,
  • Margit Zacharias and
  • Christian Kübel

Beilstein J. Nanotechnol. 2015, 6, 964–970, doi:10.3762/bjnano.6.99

Graphical Abstract
  • processing parameters is available in Table 1. The layer stoichiometries were determined by X-ray photoelectron spectroscopy [29][30]. Please note that we sandwiched the SRON layer between two 2 nm SiO2 films to mimic somewhat the SiO2 barrier layer in our superlattice approach [19]. The SiO2 film thickness
  • plane-view method here, is not available in cross-section TEM imaging [19][20][29]. The areal particle density is increased and the Si NC diameter is decreased, when the SRON layer thickness is reduced as expected. However, increasing the Si excess reduces the areal density. The idea of the superlattice
  • approach is to control the Si NC size and density independently by variation of the SRON thickness or stoichiometry respectively [19]. The results presented here are in contrast to the assumptions of this idealized superlattice approach. The reason is apparently that at high Si excess concentrations
PDF
Album
Full Research Paper
Published 15 Apr 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • superstructure displayed in LEED patterns and the narrow GIXD diffraction peaks associated with the 5× periodicity of the superlattice confirm the high structural order of the Si grating. It should be noted that to date, despite the numerous experimental and theoretical investigations on the Si/Ag(110) interface
  • ]. Although the shoulder at +4 eV from the L3 edge can be observed for other Co nanostructures (e.g., an ultrathin 1.25 ML Co film grown on Rh(111) [33] or a superlattice of 0.35 ML 2D Co nanoparticles on Au(788) [4]) this feature is more pronounced in the case of our Co nanolines, especially for low Co
PDF
Album
Full Research Paper
Published 19 Mar 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • images of Au nanoparticles with different diameters (a) 4 nm, (b) 8 nm, and (c) 15 nm; (d) 2D superlattice of 8 nm Au nanoparticles. TEM bright field images of Au@MnO and Au@Fe3O4 heterodimer-nanoparticles: (a) 9@18 nm Au@MnO, (b) 4@22 nm Au@MnO, (c) 9@15 nm Au@Fe3O4, and (d) 7@20 nm Au@Fe3O4. Domain
PDF
Album
Review
Published 05 Dec 2014

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • been used to study Si NCs produced by reactive evaporation in one of the first approaches to produce embedded semiconductor NCs, the so-called superlattice approach [31]. This method enables an easy and well-defined control over the particle size, density and ordering. Together with TEM, there are
PDF
Album
Review
Published 16 Oct 2014
Other Beilstein-Institut Open Science Activities