Search results

Search for "surface-enhanced Raman scattering" in Full Text gives 71 result(s) in Beilstein Journal of Nanotechnology.

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • the last decades [1]. This phenomenon, called surface-enhanced Raman scattering [2][3], depends on the fact that incident light leads to the excitation of surface plasmon resonances, which in turn lead to a concentration of the incident electromagnetic field thus enhancing the Raman scattering effect
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • Line 1.1- Action 1.1.2) and the European Community within the EuroNanoMed3 ERANET cofund (H2020) project “Surface-enhanced Raman scattering with nanophotonic and biomedical amplifying systems for an early diagnosis of Alzheimer’s disease pathology SPEEDY” (ID 221).
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • examined by UV–vis absorption spectroscopy, transmission electron microscopy and Raman spectroscopy. The surface enhanced Raman scattering (SERS) activity of these nanocomposites was tested using 2,2’-bipyridine as a molecular reporter and excitation in the visible and near-IR spectral regions. The
  • of the present work is to apply laser ablation to the fabrication of new materials for surface enhanced Raman scattering (SERS) [15][16], focusing on silver and silica nanoparticles in aqueous suspension. This research was undertaken for three main reasons. The first is that silver nanoparticles that
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania 10.3762/bjnano.9.208 Abstract Chloride-capped silver nanoparticles (Cl-AgNPs) allow for high-intensity surface-enhanced Raman scattering (SERS) spectra of cationic molecules to be obtained (even at nanomolar concentration) and may also play a key role in
  • seems to prevail over the Raman enhancement due to nanoparticle aggregation. Keywords: chloride activation; electronic coupling; photoreduction; silver nanoparticles; SERS-active sites; SERS switch-on effect; Introduction The most common surface-enhanced Raman scattering (SERS) substrate is the silver
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Facile chemical routes to mesoporous silver substrates for SERS analysis

  • Elina A. Tastekova,
  • Alexander Y. Polyakov,
  • Anastasia E. Goldt,
  • Alexander V. Sidorov,
  • Alexandra A. Oshmyanskaya,
  • Irina V. Sukhorukova,
  • Dmitry V. Shtansky,
  • Wolgang Grünert and
  • Anastasia V. Grigorieva

Beilstein J. Nanotechnol. 2018, 9, 880–889, doi:10.3762/bjnano.9.82

Graphical Abstract
  • , Ruhr-University at Bochum, Universitätsstraße 150, Bochum, 44801, Germany 10.3762/bjnano.9.82 Abstract Mesoporous silver nanoparticles were easily synthesized through the bulk reduction of crystalline silver(I) oxide and used for the preparation of highly porous surface-enhanced Raman scattering (SERS
  • ]. Surface-enhanced Raman scattering (SERS) is a fast developing technique which originates from the theory of plasmonics and has already realized real applicable results important enough for industry [17]. Nowadays SERS spectroscopy is an easily accessible method for routine analysis (even using portable
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2018

Towards the third dimension in direct electron beam writing of silver

  • Katja Höflich,
  • Jakub Mateusz Jurczyk,
  • Katarzyna Madajska,
  • Maximilian Götz,
  • Luisa Berger,
  • Carlos Guerra-Nuñez,
  • Caspar Haverkamp,
  • Iwona Szymanska and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 842–849, doi:10.3762/bjnano.9.78

Graphical Abstract
  • the tuning of the metal content. The potential of the obtained silver FEBID structures for plasmonics was demonstrated by surface-enhanced Raman scattering. Therefore this study paves the way for plasmonic applications based on direct electron beam writing of silver. Future experiments will comprise
  • of the purity of Co–C nanopillars on the growth pressure in cobalt deposition and provided strong hints that indeed a small precursor flux can trigger higher purity but also broader geometrical features [29]. For applications in plasmonics elemental silver is crucial. Here, surface-enhanced Raman
  • scattering being the most popular plasmonic application serves as benchmark. Indeed, the carbon signal intensity for the Raman spectra in Figure 3e is strongly enhanced due to the plasmonic excitation of the silver particles in both deposits [9][27]. The observed enhancement proves the existence of elemental
PDF
Album
Letter
Published 08 Mar 2018

Growth model and structure evolution of Ag layers deposited on Ge films

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Ewa Górecka,
  • Jakub Kierdaszuk and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2018, 9, 66–76, doi:10.3762/bjnano.9.9

Graphical Abstract
  • nm thickness has an imaginary part of permittivity lower than 1 within the 315–827 nm range [4]. Therefore, silver is widely used in plasmonic sensors [5][6][7], as substrates for surface enhanced Raman scattering (SERS) [8][9], as inclusion in solar cells [10][11][12] and in other plasmonic devices
PDF
Album
Full Research Paper
Published 08 Jan 2018

Ta2N3 nanocrystals grown in Al2O3 thin layers

  • Krešimir Salamon,
  • Maja Buljan,
  • Iva Šarić,
  • Mladen Petravić and
  • Sigrid Bernstorff

Beilstein J. Nanotechnol. 2017, 8, 2162–2170, doi:10.3762/bjnano.8.215

Graphical Abstract
  • light to nano-scale structures via local surface plasmon resonance (LSPR) [1]. LSPR produces a strong near-field enhancement and a local heating [2][3], which are considered to be promising in several applications ranging from surface-enhanced Raman scattering [4], to catalysis [5] and heat-assisted
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2017

Optical techniques for cervical neoplasia detection

  • Tatiana Novikova

Beilstein J. Nanotechnol. 2017, 8, 1844–1862, doi:10.3762/bjnano.8.186

Graphical Abstract
  • attention should be paid to the selection of the laser excitation wavelength. The improvement of the signal-to-noise ratio can be achieved by using ultrashort-pulsed laser sources (stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS)) or metal nanoparticles (surface-enhanced
  • Raman scattering, SERS). However, these improvements often increase the time of measurements and the complexity/cost of the instrument, which may hinder clinical applications of Raman spectroscopy. In addition, the spread of diagnostically relevant peaks across the Raman spectra requires the development
PDF
Album
Review
Published 06 Sep 2017

Nanostructures for sensors, electronics, energy and environment III

  • Nunzio Motta

Beilstein J. Nanotechnol. 2017, 8, 1530–1531, doi:10.3762/bjnano.8.154

Graphical Abstract
  • interaction between light and plasma electrons generated by gold nanoparticles is critical for the development of biosensing platforms [2] and for sensors based on surface enhanced Raman scattering [3]. New methods for creating thin films are expected to provide enhanced efficiency in solar cells [4] at a
PDF
Editorial
Published 27 Jul 2017

Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification

  • Mohamed Hassoun,
  • Iwan W.Schie,
  • Tatiana Tolstik,
  • Sarmiza E. Stanca,
  • Christoph Krafft and
  • Juergen Popp

Beilstein J. Nanotechnol. 2017, 8, 1183–1190, doi:10.3762/bjnano.8.120

Graphical Abstract
  • limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS) is a widespread way to amplify the intensity of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols using
  • overcome by signal-enhancement approaches including surface-enhanced Raman scattering (SERS), resonance Raman scattering, coherent anti-Stokes Raman scattering and stimulated Raman scattering [3]. For the analysis of liquids, SERS is the most frequently applied approach and has been used for analyte
PDF
Album
Full Research Paper
Published 01 Jun 2017

Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate

  • Oana-M. Buja,
  • Ovidiu D. Gordan,
  • Nicolae Leopold,
  • Andreas Morschhauser,
  • Jörg Nestler and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 237–243, doi:10.3762/bjnano.8.26

Graphical Abstract
  • of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a
  • substrate. Keywords: gold nanoparticles; malachite green; microfluidic setup; SERS; silver nanoparticles; Introduction Over the past decade special attention has been given to the investigation of hazardous environmental chemicals with impact on human health [1][2][3][4]. Surface-enhanced Raman scattering
PDF
Album
Full Research Paper
Published 24 Jan 2017

Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

  • Marco Salerno,
  • Amirreza Shayganpour,
  • Barbara Salis and
  • Silvia Dante

Beilstein J. Nanotechnol. 2017, 8, 74–81, doi:10.3762/bjnano.8.8

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2017

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • -enhanced Raman scattering (SERS) in the year 2015 alone. In contrast, in the same year only 25 publications report on the enhancement of SPR signals by introducing nanostructured surfaces. One reason can be attributed to the different size of the sensing spots used in these two prominent techniques
  • the signals in surface-sensitive techniques. The excitation of localized surface plasmons are known to improve Raman signals on structured metal surfaces significantly, and often utilized in sensing systems. A Web of Science survey revealed more than 1600 publications on the concept of surface
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface

  • Ilya A. Milekhin,
  • Sergei A. Kuznetsov,
  • Ekaterina E. Rodyakina,
  • Alexander G. Milekhin,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2016, 7, 1519–1526, doi:10.3762/bjnano.7.145

Graphical Abstract
  • or terahertz frequencies [11][12][13][14]. Nanoantennas exhibiting the LSPR in the optical spectral range are already used for surface-enhanced Raman scattering (SERS) [15][16][17][18][19], and for fluorescence enhancements [20][21][22]. Nanoantennas with the LSPR energy located in the infrared
PDF
Album
Full Research Paper
Published 26 Oct 2016

Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

  • Zhicheng Liu,
  • Lu Bai,
  • Guizhe Zhao and
  • Yaqing Liu

Beilstein J. Nanotechnol. 2016, 7, 1028–1032, doi:10.3762/bjnano.7.95

Graphical Abstract
  • 10.3762/bjnano.7.95 Abstract Sandwich-like layer-by-layer thin films consisting of polyelectrolytes and gold nanoparticles were utilized to construct surface-enhanced Raman scattering (SERS) substrates with tunable SERS properties. It is found that both the size of the nanoparticles in the layers and the
  • ; polyelectrolyte; Introduction Surface-enhanced Raman scattering (SERS) spectroscopy, which relies on metal nanostructures made of noble metals (Au, Ag and Cu) that sustain localized surface plasmon resonance (LSPR), is applied as a promising analytical tool for detecting and identifying trace amounts of
PDF
Album
Supp Info
Letter
Published 15 Jul 2016

Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

  • Marta Espina Palanco,
  • Klaus Bo Mogensen,
  • Marina Gühlke,
  • Zsuzsanna Heiner,
  • Janina Kneipp and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2016, 7, 834–840, doi:10.3762/bjnano.7.75

Graphical Abstract
  • nanostructures generated in the extracellular space of onion layers and within the epidermal cell walls can serve as enhancing plasmonic structures for one- and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies
  • nanoparticles; surface-enhanced Raman scattering; surface-enhanced hyper-Raman scattering; Introduction Nanostructures made from metals, such as silver, gold, aluminium or palladium in various sizes and shapes attract growing attention because of their interesting properties and broad applications in many
  • to the plasmonic nanostructures are probed by surface-enhanced Raman scattering (SERS) and two-photon-excited analogous surface-enhanced hyper-Raman scattering (SEHRS) [21][22]. While SERS signals scale with the local optical field strengths by 104, SEHRS signals have a scaling factor of 106. This
PDF
Album
Full Research Paper
Published 09 Jun 2016

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by “activating” the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could
  • a strong increase of the Raman response of molecular adsorbates in the SERS (Surface Enhanced Raman Scattering) effect. A strong SERS signal from such AgNPs can be obtained by “activating” the NP surface by addition of a small quantity of LiCl to the colloid. In addition, a sizeable catalytic effect
PDF
Album
Full Research Paper
Published 18 Mar 2016

Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

  • Tuan Anh Pham,
  • Andreas Schreiber,
  • Elena V. Sturm (née Rosseeva),
  • Stefan Schiller and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2016, 7, 351–363, doi:10.3762/bjnano.7.32

Graphical Abstract
  • parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS) by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In
  • obtained. Therefore, Raman spectroscopy was performed. If Hcp1_cys3 is located in between two adjacent Au NPs, as indicated by our TEM investigations, surface-enhanced Raman scattering (SERS) should be observed due to the amplification of the electromagnetic field in this so-called “hot spot” [26]. In
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2016

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

  • Mario Hentschel,
  • Bernd Metzger,
  • Bastian Knabe,
  • Karsten Buse and
  • Harald Giessen

Beilstein J. Nanotechnol. 2016, 7, 111–120, doi:10.3762/bjnano.7.13

Graphical Abstract
  • itself is not the source of the signal, but rather an optically active species is responsible and the antenna is “dark”. This observation is in particular true for surface-enhanced Raman scattering (SERS) [45][46][47] and for experiments on surface-enhanced infrared absorption spectroscopy (SEIRA) [48
PDF
Album
Full Research Paper
Published 26 Jan 2016

Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

  • Sanda Boca,
  • Cosmin Leordean,
  • Simion Astilean and
  • Cosmin Farcau

Beilstein J. Nanotechnol. 2015, 6, 2498–2503, doi:10.3762/bjnano.6.259

Graphical Abstract
  • , 400084 Cluj-Napoca, Romania 10.3762/bjnano.6.259 Abstract Chemiresistors are a class of sensitive electrical devices capable of detecting (bio)chemicals by simply monitoring electrical resistance. Sensing based on surface enhanced Raman scattering (SERS) represents a radically different approach, in
  • demonstrated by the detection of a biologically relevant model analyte, 4-mercaptophenyl boronic acid. Keywords: colloidal nanoparticles; convective self-assembly; interparticle gaps; surface enhanced Raman scattering; chemiresistor; Introduction The development of optical sensors is still following an
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2015

Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

  • Alexander G. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Volodymyr M. Dzhagan,
  • Ovidiu D. Gordan,
  • Sergey L. Veber,
  • Cameliu Himcinschi,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2015, 6, 2388–2395, doi:10.3762/bjnano.6.245

Graphical Abstract
  • 10.3762/bjnano.6.245 Abstract We present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the
  • ; localized surface plasmon resonance; metal nanoclusters; phonons; surface-enhanced Raman spectroscopy; Introduction Since its observation in 1974 [1], surface-enhanced Raman scattering (SERS) has become a powerful technique for detecting and studying ultra-low quantities of organic and biological
  • -enhanced Raman scattering effect. A maximal SERS enhancement by optical phonons in CdSe NCs was achieved for arrays of Au dimers with a minimal gap between nanoclusters in a dimer resonantly excited with the light polarized parallel to the long dimer axis where hot spots are realized. A sketch representing
PDF
Album
Full Research Paper
Published 14 Dec 2015

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • , surface-enhanced Raman scattering (SERS) detection and catalysis of chemical reactions. Furthermore, biocompatible and functionalized NPs have applications in diagnosis and treatment of cancer. For these two purposes, fluorescent and magnetic nanocrystals for detection of tumors and also nanosystems for
PDF
Album
Review
Published 10 Dec 2015

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • structures [8]. AuNPs have been studied intensively for a wide range of applications such as catalysis [9], biosensing [10], colorimetric sensing [11], optical sensing (surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS)) [12][13], photonics [13][14], photovoltaic devices [15] and
PDF
Album
Full Research Paper
Published 10 Dec 2015

Au nanoparticle-based sensor for apomorphine detection in plasma

  • Chiara Zanchi,
  • Andrea Lucotti,
  • Matteo Tommasini,
  • Sebastiano Trusso,
  • Ugo de Grazia,
  • Emilio Ciusani and
  • Paolo M. Ossi

Beilstein J. Nanotechnol. 2015, 6, 2224–2232, doi:10.3762/bjnano.6.228

Graphical Abstract
  • concentration range between 3.3 × 10−4 M and 3.3 × 10−7 M. The experimental parameters have been investigated and the dynamic concentration range of the sensor has been assessed by the selection of two apomorphine surface enhanced Raman scattering (SERS) peaks. The sensor behavior used to detect apomorphine in
  • enhanced Raman scattering (SERS) effect, have significantly grown [1][2][3][4][5][6][7]. These applications have been fostered by the availability of noble metal nanostructures, which are either intentionally fabricated with the aim of optimizing the signal intensity and reproducibility [2][3] or carefully
  • unfiltered human blood plasma is presented and discussed. Keywords: apomorphine; Au NPs; nano-roughened films; pulsed laser deposition; self-assembled films; SERS; Introduction In recent years, the analytical applications of Raman spectroscopy and its enhanced variant employing plasmonic media, the surface
PDF
Album
Full Research Paper
Published 26 Nov 2015
Other Beilstein-Institut Open Science Activities