Search results

Search for "topography" in Full Text gives 406 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  • controlled temperature (21–23 °C) and humidity (50–70%). All AFM experiments were conducted with a Dimension Icon AFM (Veeco Inc., USA). The topography of the samples was measured in tapping mode while adhesion force, friction, and wear analysis were conducted in contact mode. No extra treatment was applied
  • variations in structure or chemistry may lead to drastic changes in friction or wear [20]. We, therefore, analyse the topography, adhesion, frictional coefficient, and wear resistance of sandfish scale by atomic force microscopy applying several types of probe shape and material. In order to allow for a
  • meaningful comparison we determined the tribological parameters of snake scales and technical surfaces with the same probes, too. Structural properties of sandfish scales Figure 3a,b shows the topography of sandfish dorsal and ventral scales recorded by atomic force microscopy. On the dorsal scale a
PDF
Album
Full Research Paper
Published 02 Oct 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • °. FESEM images showing (c) the topography of Co film deposited at room temperature on the glass substrate, and (d) the porous topography of Co3O4 on the glass substrate after rapid thermal processing-induced oxidation in air at 550 °C for 10 min. (e) Morphology of a 70 nm thick Co3O4 film on FTO/glass, (f
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • surfaces and the generated patterns were found to depend on the material type and surface topography. Based on the presented strategy, we were able to achieve patterning times of a few seconds and produce quasi-hexagonal micro-nanopatterns of gold nanoparticles on smooth surfaces. Hence, this method is a
  • steps that are only achievable with clean-room methods. For example, so-called “micro-nanostructures” have been fabricated by combining BCML with electron-beam lithography and photolithography [20][21]. A different approach was proposed based on topography-induced micro-nanostructuring, but this method
  • maximum and minimum. Apparently, the micelle-containing o-xylene solution spreads out most reproducibly on silicon and less on NiTi. To explain the differences in the droplet diameters of our different materials, the surface topography of the samples was measured using atomic force microscopy (AFM). As
PDF
Album
Full Research Paper
Published 04 Sep 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • , the first nanoscale characterization of sea urchin temporary adhesives was performed using atomic force microscopy (AFM). Results: The adhesive topography was similar under dry and native (seawater) conditions, which was comprised of a honeycomb-like meshwork of aggregated globular nanostructures. In
  • only been studied in P. lividus and was found to be composed of proteins and neutral sugars [18]. Although sea urchin tube feet and adhesive secretions have been extensively studied, its topography and mechanical properties at the nanoscale have never been investigated. Therefore, the aim of the
  • (two high-energy surfaces) than on teflon (a low-energy surface) [7]. In order to understand the topography, P. lividus footprints were imaged using different probing methods (peak force tapping in air and fluid) and in various environments: dry, moist and under native conditions (ASW). In all the
PDF
Album
Full Research Paper
Published 24 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • average spacing between the columns is (10 ± 3) nm, with an average width of the columns of (19 ± 4) nm, as determined by SEM measurements [24]. The topography of the deposit is shown in the tapping-mode atomic force microscopy (TM-AFM) image of Figure 1d, where the apex of the columns appears as
  • . The distribution of the Vcpd values can be fit with a Gaussian distribution centred at −931 mV with a FWHM of 97 mV (Figure 2d). A direct correlation between the topography and the Vcpd signal can be observed, with a higher height corresponding to a more negative Vcpd. It is however unlikely that the
  • contrast purely originates from a crosstalk between the topography and the Vcpd, as indicated by local mismatching between both contrasts (see red lines in Figure 2a and 2b). Moreover, further measurements (see Figure 3) showed that P3HT grafting barely affects the overall morphology but smooths
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • homogenous granules. The footprints comprised a meshwork on top of a thin layer. This topography was consistently observed using various methods like scanning electron microscopy, 3D confocal interference microscopy, atomic force microscopy, and light microscopy with crystal violet staining. Additionally, we
  • mannose in the secreted material. Conclusion: Despite the distant relationship between the two sea star species, the morphology of tube feet and topography of footprints in A. gibbosa shared many features with the previously described findings in A. rubens. These similarities might be due to the
  • thin homogeneous film covering the substrate with a sponge-like meshwork on top [11][12][25][26]. This topography is not altered by the release of the de-adhesive substance [26]. In the forcipulatid sea star Asterias rubens, adhesive secretions were investigated in greater detail. In this species, the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants

  • Aikaterini-Rafailia Tsiapla,
  • Varvara Karagkiozaki,
  • Veroniki Bakola,
  • Foteini Pappa,
  • Panagiota Gkertsiou,
  • Eleni Pavlidou and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2018, 9, 1986–1994, doi:10.3762/bjnano.9.189

Graphical Abstract
  • nanoplatform might be a suitable and helpful candidate to reduce implant-associated acute inflammations and to impede implant failure. (a) Representative SEM micrographs of electrospun CA fibers, (b) AFM topography image of CA scaffolds with root mean square Sq = 135 nm and peak-to- peak Sy = 795 nm. In vitro
  • , respectively. (a) Representative SEM micrograph of electrospun CA:dexam fibers, (b) AFM topography image of CA:dexam scaffolds with root mean square Sq = 206 nm and peak-to-peak Sy = 1203 nm. In vitro degradation of CA scaffolds loaded with dexamethasone as function of the time. Representative SEM micrographs
PDF
Album
Full Research Paper
Published 13 Jul 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude
  • detection. The SNR can be improved by choosing an ωE at one of the cantilever’s eigenmodes. We refer to this mode as AM-KPFM second eigenmode (AM 2 EM), where the topography is measured at the first, and the CPD is measured on the second eigenmode. Finally, in AM-KPFM lift mode (AM Lift mode) the topography
  • cantilevers was ≈225 μm, the width ≈35 μm. Tip, tip cone and cantilever are coated with PtIr (work function 5.5 eV [39]) on both sides. The topography feedback was performed with amplitude modulation (AM) on the first eigenmode and the oscillation amplitude was kept to approximately 40 nm for all methods. To
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • underpins nearly all AFM topography imaging. Normally, this feedback loop continually updates the AFM probe height in order to maintain a constant AFM tip–sample interaction, which is sensed via the integrated cantilever deflection or amplitude that, of course, changes at surface protrusions or depressions
  • . To simultaneously map VOC directly, the topography is tracked in the same manner, but a secondary PID loop is also configured to continually adjust the sample bias in order to maintain a photocurrent of zero. This is akin to Kelvin probe microscopy or scanning surface potential microscopy, in which a
  • overlain images of Figure 2a–c, this reveals even more spatially localized variations in photovoltaic performance. As with every study based on scanning probes, it is important to consider any influence of topography on the results. The as-provided surface of the essentially commercial grade
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • : Collagen is a basic component of the periodontium and plays an important role in the function of the periodontal unit. Therefore, coating with collagen/gelatin has been applied to enable dental implants to positively interact with peri-implant tissues. Although the micro/nanoscale topography is an
  • . Thus, gelatin surfaces patterned using genipin crosslinking are now an available option for biocompatible material patterning. Keywords: cell attachment; cell proliferation; dental implants; gelatin; genipin; nanopatterning; Introduction Topography on the micro- and nanoscale is an important property
  • after 4 days of culture [69]. These studies support the hypothesis that surface topography and chemical composition influence cell proliferation. Furthermore, the spatial arrangement of surface patterns with respect to cell size also appears to be important [59][67]. It has been shown that the amount of
PDF
Album
Full Research Paper
Published 11 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • energy-dispersive spectroscopy (EDS) detector) operating at 200 kV for imaging and elemental characterization. Roughness and topography of the as-grown MoS2 NSs (before transfer) were examined by atomic force microscope (AFM). The AFM scans were recorded in resonant mode (AppNanoTM made cantilever with
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • scanning sequences (Figure 4), surface topography images recorded before and after the sliding sequences (Figure 5), and electron microscopy images of the tips before and after the experiments (Figure 6). In general, the onset of tip activation was evident by a sudden increase in friction (Figure 3a,b
  • sliding distance with no material transferred to the tip (Figure 6c). Observing changes of the topography of the reactive Si(100) surface was not possible as the tip adhered strongly to the surface, leading to artifacts in the topography measurement (similar to Figure 5f). The initial friction between a
  • friction of about 0.01 nN (blue dots in Figure 3a, section 1) and modification of surface topography by displacement of surface atoms (Figure 5i,j). To compare tribochemical reactions of SiOx/Si and Au/Si tips with the Au(111) surface, a sputter-cleaned Au/Si tip was activated by leaving it in stationary
PDF
Album
Full Research Paper
Published 05 Jun 2018

Nanoscale electrochemical response of lithium-ion cathodes: a combined study using C-AFM and SIMS

  • Jonathan Op de Beeck,
  • Nouha Labyedh,
  • Alfonso Sepúlveda,
  • Valentina Spampinato,
  • Alexis Franquet,
  • Thierry Conard,
  • Philippe M. Vereecken,
  • Wilfried Vandervorst and
  • Umberto Celano

Beilstein J. Nanotechnol. 2018, 9, 1623–1628, doi:10.3762/bjnano.9.154

Graphical Abstract
  • apply always the bias to the sample (i.e., the metallic Ni/Pt layer) while the C-AFM tip is grounded. By measuring the current (using the tip as a nanoscale electrode) and the tip deflection as a function of the AFM tip position, two-dimensional maps of the local conductivity and the topography can be
  • formed. For instance, Figure 1b shows the topography and current distribution map when performing such measurements in the case of the electrodeposited LMO. This basic concept was extended with the development of various scanning probe microscopy (SPM) techniques [8][9][10][11][12] dedicated to probe
  • platform is key to unlock the potentials of ASB. C-AFM configuration and study of the influence of an applied voltage stress on MnO2 and LMO. (a) Schematic of the C-AFM setup and sample structure. The tip is grounded while the dc bias is applied to the sample. (b) Topography and current maps as collected
PDF
Album
Supp Info
Letter
Published 04 Jun 2018

Evaluation of replicas manufactured in a 3D-printed nanoimprint unit

  • Manuel Caño-García,
  • Morten A. Geday,
  • Manuel Gil-Valverde,
  • Xabier Quintana and
  • José M. Otón

Beilstein J. Nanotechnol. 2018, 9, 1573–1581, doi:10.3762/bjnano.9.149

Graphical Abstract
  • account the 2D nature of the topography, 2D fast Fourier transform was applied on to obtain the spatial frequency. The pitch value is obtained from the inverse distance between the zeroth order and the first order of the FFT (actually the script takes the distance between the two first orders and divides
  • maximum value. It gives an approximate idea of the image scale and is used for certain general calculations within the code. Angles: The saw-tooth pattern is characterized by its pitch and angles. The blazing angle, αblazing, determines the slope of the sawtooth and ultimately the sample topography. The
  • image processing. First described a decade ago [11], it is usually employed to detect objects in images, especially pedestrians. Here we propose to apply HOG to quantify the amount of superficial errors of a given topography. The underlying concept is relatively simple: In the 2D mesh of the sample
PDF
Album
Full Research Paper
Published 28 May 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • ]. Information about the behavior of the material as a solid state electrolyte cannot be derived based on SEM and EDX mappings alone, hence we performed ESM. Figure 2 shows correlative images of SEM and AFM topography as well as ESM on identical regions of LATP sintered at 1050 °C. The SEM image (Figure 2a
  • two different areas indicated by the blue (1) and red (2) markings in Figure 2a. In the topography images illustrated in Figure 2b,d, minor amounts of residue originating from the polishing procedure are observed in the form of elevated particles. Apart from this, the AFM images reflect the same
  • surface features as observed by SEM, providing evidence that both methods can be applied complementary. The same pores as those observed via SEM can be found in the AFM topography image and the topography reveals some preferential etching at the grain boundaries and interfaces. Differentiation between the
PDF
Album
Full Research Paper
Published 28 May 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • nm) and two different polarizations. After the processing of the optical images, the distribution of hot spots can be correlated with the topography of the structures, as indicated by the presence of brighter spots at the apexes of the nanostructures. This technique is validated by comparison of the
  • origins, such as topography effects [11], tip defects [12], or interferometric effects [11]. Consequently, the resulting high far-field background signal tends to overcast the near-field contribution of the signal. To address these drawbacks, several methods to enhance the near-field contribution have
  • with noticeably reduced oscillations is obtained (Figure 2d). This filtered image better displays the near-field contribution of the optical signal. It can be used to directly map the hot spots and to correlate their spatial positions to the topography of the investigated structures. Figure 2d shows
PDF
Album
Full Research Paper
Published 23 May 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • experimentally determined amplitude can be expressed as = 101 pm V−2|Udc − UCPD|Uac. A comparison with modeled results is given in section Modeling. We demonstrate imaging capability in air using electrostatic excitation in Figure 3c. A 3D rendering of the recorded topography shows copper grains evaporated onto
PDF
Album
Full Research Paper
Published 08 May 2018

Interplay between pairing and correlations in spin-polarized bound states

  • Szczepan Głodzik,
  • Aksel Kobiałka,
  • Anna Gorczyca-Goraj,
  • Andrzej Ptok,
  • Grzegorz Górski,
  • Maciej M. Maśka and
  • Tadeusz Domański

Beilstein J. Nanotechnol. 2018, 9, 1370–1380, doi:10.3762/bjnano.9.129

Graphical Abstract
  • ][13][14]. In-gap states (appearing in pairs symmetrically around the Fermi level) can be nowadays controlled electrostatically or magnetically [12] whereas their topography, spatial extent and polarization can be precisely inspected by the state-of-art tunneling measurements [15][16]. It has been
PDF
Album
Full Research Paper
Published 07 May 2018

Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate

  • Aiden A. Martin and
  • Philip J. Depond

Beilstein J. Nanotechnol. 2018, 9, 1282–1287, doi:10.3762/bjnano.9.120

Graphical Abstract
  • . The surface topography of the resulting deposits was measured by a Keyence VK-X100 laser scanning confocal microscope [23] (LCSM, specified height measurement resolution of 5 nm and measurement repeatability of 0.02 μm) and analyzed using the VK Analyzer software package (version 3.3.0.0). The
PDF
Album
Supp Info
Letter
Published 24 Apr 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • that corresponds to the contact potential difference (CPD). The topography control (z feedback) was normally realized on the fundamental resonance of the cantilever. However, in some experiments the z feedback and the cantilever oscillation were switched off during the pulse sequences and the tip was
  • retracted 50 nm. Control experiments with different tip retractions between 10 and 50 nm showed no dependence of the results on the tip retraction. To allow Kelvin control on the fundamental resonance frequency (by applying the Kelvin ac voltage at f0) the topography control was applied on the second
PDF
Album
Full Research Paper
Published 24 Apr 2018
Graphical Abstract
  • Figure 3a. The bright spots in Figure 3a are taller than the surrounding OTS matrix. There are about 35 CMPS nanodots visible in the 3 × 3 µm2 topography image in Figure 3a, which matches the surface density of OTS nanoholes. A ball-and-stick model of a CMPS molecule indicates a length of 0.75 nm in
  • Figure 3b [38]. A close-up view of three nanodots are shown in zoom-in topography and phase images in Figures 3c and 3d. The heights and sizes of the nanodots are quite similar, without nonspecific attachment of contaminants in surrounding areas of the OTS resist film. There is a dark outline surrounding
  • the nanodots that is apparent in the phase image (Figure 3d) which is attributable to differences in tip–surface response at the edges of the features versus the center areas of the nanostructures. The cursor profile in Figure 3e profiles the topography of two individual CMPS nanostructures that are
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • transparency injury in sample 2 caused by high temperature (450 °C) and oxidation in the atmosphere, no other differences amongst samples 1–5 were observed. In addition, the increased apparent height in the SPFM images compared with the height in the topography images (Figure 1d–n) indicates that the GO sheets
  • information (blue arrows marked in Figure 1i,k), indicating the contributions from the polarization force (dielectric properties) and the van der Waals force (topography) between the tip and sample. As we can see in the Figure 1l,m,n, the apparent height of samples 1 and 5 are 19.3 nm (Figure 1n) and 6.9 nm
  • of proportionality. The contrast between the phase shifts of probe imaging on mica and sample n can be expressed as: In EFM imaging, the lift mode is used. Topography data recorded during the main pass is used to keep the tip at a constant distance from the surface (lift scan height was 15 nm here
PDF
Album
Full Research Paper
Published 11 Apr 2018

Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy

  • Miead Nikfarjam,
  • Enrique A. López-Guerra,
  • Santiago D. Solares and
  • Babak Eslami

Beilstein J. Nanotechnol. 2018, 9, 1116–1122, doi:10.3762/bjnano.9.103

Graphical Abstract
  • [4], the first eigenmode of the cantilever is excited using the AM-AFM method and used for measuring topography, while a higher eigenmode (generally the second eigenmode) is simultaneously excited in “open loop” (with constant drive amplitude and frequency) to map the surface properties of the
  • . Polystyrene thin-film topography images for AM-AFM using the fundamental eigenmode (a), AM-AFM using the second eigenmode (b), and bimodal AFM using the first two eigenmodes (c); (d) shows the scan line profiles, whereby the color code on the graph is based on the dashed lines in the images. The inset graph
  • is the enlarged graph of a portion of the topography in order to show the differences in topography values among the three different experiments. f1 ≈ 45 kHz, f2 ≈ 280 kHz, k1 ≈ 5.80 N/m, k2 ≈ 210 N/m, A1 ≈ 350 nm, A2 ≈ 11 nm, amplitude setpoint (on the controlled amplitude) = 50%. For all the
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • state is higher than that applied during horseshoe state observation. In order to validate the L-TEM results obtained at remanence and to measure the three-dimensional (3D) topography of the sample, additional analyses were carried out using AFM and MFM. A square nanoring was deposited at 5 keV on a Si
  • substrate for MFM analysis. An AFM topography image is shown in Figure 4a, while a height profile taken across the middle of the nanoring is shown in Figure 4b. Both sides have a thickness of ca. 40 nm, a length of 1 μm and a width of ca. 100 nm. A topographic map of the same area is shown in Figure 4c. In
PDF
Album
Full Research Paper
Published 03 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • the same region of a hybrid sample in dark and illuminated conditions, respectively (see Figures S4 and S5 for a topographic AFM image of this region and line profiles (topography and surface potential) extracted near the central region of the images, respectively, Supporting Information File 1). In
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018
Other Beilstein-Institut Open Science Activities