Search results

Search for "transfer" in Full Text gives 955 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • to [29]. It should be noted that the VM is different from the jumping mode (JM) proposed in [30]. First, JM is a contact mode. Second, in jumping mode it is assumed that after measuring the height at a certain point, the probe is lifted by a certain distance, for the purpose of its safe transfer to
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • branches. The dendritic nanostructure allowed the network passage for electron transfer after ammonia molecules interact with the sensing surface. It showed an about 5–8 times enhanced response and an improvement in recovery time by about 30–50 times compared to a pristine NiO sensor. The sensor also
PDF
Album
Supp Info
Review
Published 09 Nov 2021

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • . The overpotential at a given current density is a measure of the power losses in the system resulting from internal resistances, such as charge transfer resistance and Ohmic resistance relevant to the practical capacity of the system. The resulting values determined in this fashion are summarised in
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • for quantum and chemical transformation of surface-adsorbed molecular systems under focused electron beam irradiation [13][14][15][16]. Within the IDMD framework various quantum processes occurring in an irradiated system (e.g., ionization, bond dissociation via electron attachment, or charge transfer
  • point within the system per primary electron. The electronic collisions with precursor molecules lead to their electronic excitation followed by the fragmentation and energy transfer to the recoil fragments. In the following subsections these processes are discussed in detail. PE, SE, and BSE
  • in the tabulated form for a 20 nm × 20 nm grid covering the simulation box (see Figure 3B) is used as input for the simulations of the irradiation phase of the FEBID process (see step 4). Energy transfer to the medium A projectile electron interacting with the precursor molecule transfers some amount
PDF
Album
Full Research Paper
Published 13 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • that the nanofibers were assembled into sea-urchin-like microspheres. Fmoc-ʟ-Lys nanofibers act as templates to regulate the self-assembly of pigments. Sea-urchin-like structures facilitate light collection due to enhanced absorption cross sections and exciton energy transfer. In addition, Liu et al
PDF
Album
Review
Published 12 Oct 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • calibration for the gain of the cantilever’s transfer function. DH-KPFM has found applications on sensitive materials and solid–liquid interfaces where conventional CL KPFM does not perform very well [43]. CPD measurements in an OL operation have also been demonstrated in more inclusive scanning probe modes
PDF
Album
Full Research Paper
Published 06 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • , therefore, reduces the hole injection barrier, which in turn creates a more efficient transfer to the HTL. In the device configuration of Figure 6a, a graphene oxide–Au nanocomposite HIL inserted between ITO and NPB was used to enhance the EL of Alq3-based OLED [51]. The correlation between the wavelength
PDF
Album
Review
Published 24 Sep 2021

A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques

  • Berkin Uluutku,
  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2021, 12, 1063–1077, doi:10.3762/bjnano.12.79

Graphical Abstract
  • information using the Z-transform mathematical technique into the so-called z-domain, which is analogous to the Laplace domain, but applicable to discrete finite signals [28]. This enables the extraction of the viscoelastic transfer functions of the material, bypassing the need for any viscoelastic model
  • assumptions (see Figure 1). These transfer functions are the viscoelastic relaxance and retardance, where the relaxance describes the time response of a viscoelastic material to a unit impulse excitation (Dirac delta function) of strain and the retardance describes the response of the material to an impulsive
  • operators or transfer functions: From Equation 5 and Equation 6, it is clear that the relaxance is a transfer function with which the stress can be calculated using a given strain input. Likewise, by using the retardance, strain can be calculated for a specific stress input. Clearly also, the relaxance and
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • -efficiency RT Na–S batteries (vide infra). The electrochemical mechanism of RT Na–S batteries is based on the release of sodium cations from the anode leading to the transfer of two electrons that reduce sulfur on the cathode side (Figure 1A) [4]. The redox reactions of the battery are as follows (the
  • that academic institutions may have already protected methodologies or materials introduced in this review. Besides, it could be expected that the increasing research and technological relevance will translate in an increasing number of patents and actual transfer to the productive sector. Conclusion
PDF
Album
Review
Published 09 Sep 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • induces sample alterations and material behavior changes due to doping [22]. Not all nuclear interactions lead to sputtering. If the sample atom cannot be removed from the sample because of insufficient energy transfer or because the sample atom cannot exit the sample due to its sub-surface position
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • electrodes with a small radius (usually less than 50 nm), which is comparable or less than the thickness of the electric double layer [1][2]. The main advantages of such systems include high mass-transfer rates under steady-state diffusion, diminished electric double layer capacitance, and short response
PDF
Album
Full Research Paper
Published 30 Aug 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • substrate. Hurdax et al. reported that both charged and neutral species of sexiphenyl can co-exist on thin dielectric MgO films on Ag(100) [89]. Due to the changed work function of the substrate, charging of the adsorbates is enabled by electron tunneling. The charge transfer strongly influences the
PDF
Editorial
Published 23 Aug 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • anisotropic gold nanoparticles through the process of proton transfer (PT) [67]. A 1-(2-hydroxy-5-chlorophenyl)-3,5-dioxo-1H-imidazo[3,4-b]isoindole (ADCL)-based PT process on anisotropic gold nanoparticles was found to be accelerated compared to isotropic gold nanoparticles. The role of surface chemistry in
PDF
Album
Review
Published 18 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • basic mechanism is EM through localized surface plasmon resonances (LSPRs) on the metal surface [16]. CE is at least two orders of magnitude weaker than EM. The CE mechanism is supposed to be caused by a charge transfer between the plasmonic surface and the chemically adsorbed analyte molecules, which
  • minimizes additional effects related to SERS enhancement due to energy transfer to the support, which might occur when conductive or semi-conductive materials are used [31]. The immobilization of Ag NPs from sodium citrate solution was possible due to the poor adsorption of citrate ions on the Ag surface
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • . Additional regularization methods apply penalties on the layer parameters, generally, making their absolute value smaller. The process of shrinking the parameter values is known to increase the generalization of the fit to new unseen data which in turn leads to less over-fitting. Transfer learning is
  • biggest room for deviation from reality is the reproduction of features extending across several scan lines, which could be missed by random gaps of several lines in the corresponding line segments. The training process applied transfer learning, which used an existing library of animal images (which are
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • ]. However, a few studies have demonstrated that the endocytosis pathway is the main mechanism for the delivery of large molecules mediated by US [33][84][85]. Schlicher et al. investigated the uptake and transfer of different molecular weight fluorescent molecules, including calcein, fluorescein
  • that sonoporation is responsible for drug uptake mostly applied higher intensity US [72]. Acoustic radiation force The ARF has been defined as a mechanical force that is generated by the transfer of momentum from the US wave to the medium [60]. The radiation force makes any particles suspended in the
PDF
Album
Review
Published 11 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • device with embedded magnetic materials. The locomotion of MMRs is actuated and controlled through the principles of magnetism regarding energy transfer and the magnetoelectric effect. Magnetic materials have been widely used in the field of MNRs to control and drive the movement of robots, target the
  • showed stability, specificity, and semi-permeability, together with cell compatibility [25], which could be well applied to MNRs and enhance the driving force of MNRs under certain conditions. Energy transmission and control of the MNRs could be realized by wireless power transfer (WPT) systems [16]. The
  • -assisted gene transfection. Magnetic MNRs containing nucleic acids were delivered to target cells by magnetic fields. This method could change gene function or protein expression, which is of great significance for future research on gene transfer and gene therapy. Table 1 summarizes the relevant
PDF
Album
Review
Published 19 Jul 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • experimental results. Furthermore, the characterization of attachment solutions in nature can support the development of bioinspired gripping devices [289][290][291][292][293]. The transfer to technical applications in this context would benefit from the isolation of the collective features of different
PDF
Album
Review
Published 15 Jul 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • of geometries were stable, while others were repelled from the ML. The stable configurations showed a preference to be 3D. 2D and 3D Co4 structures were competitive in energy, with a preference towards structures that incorporated into the S layer. Further, the vacancy facilitated the transfer of an
  • S atom from the ML onto the Co structure to create a Co4S cluster, which was also the most favourable Co4 structure on the defective ML. This shows that, in the presence of Co, further vacancies can be formed through the transfer of S atoms onto the metal cluster. In contrast, the presence of the
  • results, there are some concerns how the transfer of S atoms from the ML to Con would affect the purity of the interconnect. Ru on MoS2 might be better suited as a catalyst. However further studies involving larger Run structures are needed to determine if the overall strength of the interaction between
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • [42], control of surface roughness [43] and morphology of islands or nanowires [26][44][45][46][47], as well as control of adsorbate transfer to graphene [48]. Thus, the effects of EM induced by the presence of a potential difference on opposite sides of the substrate can significantly affect the
  • mass transfer; ∇ ≡ ∂/∂r. For simplicity, we assume, that there are no cross-effects in mass transfer, and that Fick’s or Fourier’s laws adequately describe mass transport. The last term in Equation 1 represents a stochastic source, which in the simplest case is chosen as white zero-mean delta
  • formation processes, that is, separated adsorbate structures on a substrate or separated holes inside the adsorbate matrix. It follows that in the case k∥ → 0 (no mass transfer between layers) or small α adsorption/desorption processes can not induce pattern formation. For a fixed value k∥ = an increase of
PDF
Album
Letter
Published 13 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • tunable bandgaps, high charge carrier mobility, and efficient intramolecular charge transfer. In this minireview, recent advances of D–A polymers in photocatalytic hydrogen evolution are summarized with a particular focus on modulating the optical and electronic properties of CPs by varying the acceptor
  • of CTFs. The carbazole–triazine-containing CTF P1 (Figure 2) triggered a strong intramolecular charge transfer (ICT) and achieved a high HER of 538 μmol·h−1 (50 mg). Bojdys and co-workers reported a series of CTFs with diverse functional moieties (e.g., heterocycles containing S and/or N) at the
  • . However, HER is affected by the interplay of several factors, including surface area, light absorption range, crystallinity, charge transfer, and separation. Two azine-linked COFs with three pyridine segments neighboring the central benzene or triazine fragment were prepared to make comparisons, that is
PDF
Album
Review
Published 30 Jun 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • copper foil with methane gas as the precursor [31]. Next, graphene was transferred onto GaN NWs substrates. Due to low adhesive forces between graphene and corrugated substrates, the most common method to transfer graphene with the use of poly(methyl methacrylate) (PMMA) polymer could not be applied for
  • the transfer onto NW substrates [31]. Therefore, we used stable orthogonal frames from polydimethylsiloxane (PDMS) polymer to stabilize the graphene during the transfer process [32]. The GaN NW substrates were fabricated by plasma-assisted molecular beam epitaxy (PAMBE) in N-rich conditions on (111
  • with different variations in height is presented in Figure 1. The large cracks visible in the graphene layer are caused by the transfer process. Graphene on NWs with equal height is smooth (Figure 1a, Figure 1d). Small wrinkles are the evidence of a small expansion of the graphene hanging in between
PDF
Album
Full Research Paper
Published 22 Jun 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • originate from a locally varying charge transfer between the substrate and the dielectric layer [38][39][40]. In our studied substrate, it is the lattice mismatch between h-BN and the Cu(111) substrate that leads to a varying atomic registry and subsequently induces a lateral modulation of the charge
  • transfer [41]. Additionally, this leads to in-plane electric fields, which have been shown to trap atoms, molecules, and nanoclusters [11][13][42]. To map the local Φ fluctuations and to correlate them with the structural properties of the surface, we use two complementary methods: The first method is
PDF
Album
Letter
Published 17 Jun 2021

Simulation of gas sensing with a triboelectric nanogenerator

  • Kaiqin Zhao,
  • Hua Gan,
  • Huan Li,
  • Ziyu Liu and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2021, 12, 507–516, doi:10.3762/bjnano.12.41

Graphical Abstract
  • ], single electrode mode [32][33][34], and independent layer mode [35]. In order to explain the charge transfer process between two friction materials in contact, various models have been proposed and explored, such as electron cloud model [36][37][38], ion transfer model [39], and material transfer model
  • electrification and electrostatic induction. Contact electrification refers to the electron transfer between two different materials in contact because the atoms are so close together. An electric field is generated after friction electrification, and electrostatic induction is caused by the electric field. The
  • the right side of the triangle increase with an increase of ds. Also, the potential difference increases. Therefore, if an external circuit can be built, then the load can be directly connected to the right side and the hypotenuse of the right-angled triangle and the transfer of electrons can be
PDF
Album
Full Research Paper
Published 28 May 2021
Other Beilstein-Institut Open Science Activities