Search results

Search for "uptake" in Full Text gives 257 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics

  • Stefania Lettieri,
  • Marta d’Amora,
  • Adalberto Camisasca,
  • Alberto Diaspro and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2017, 8, 1878–1888, doi:10.3762/bjnano.8.188

Graphical Abstract
  • development of a nanosensor which can be “turned on” in an acidic environment. Remarkably, the fluo-CNOs maintained the switching properties upon cell internalization, as they were “switched-on” in response to acidic pH. In vitro experiments on HeLa cells showed excellent cellular uptake and low toxicity of
  • fluo-CNOs were successfully internalized by cells and were distributed throughout the cytoplasm. Remarkably the cellular uptake of the fluo-CNOs was clearly observed soon after the incubation, as shown by the presence of CNOs inside the cell after 2 h (Figure 8A). After 12 and 48 h of incubation
  • (Figure 8B,C), a progressive accumulation of fluo-CNOs was observed during the cell proliferation. Additionally, the efficient uptake was supported by a three dimensional reconstruction of cells treated with CNOs (Figure 9). Finally, we demonstrated that the on/off fluorescent emission properties of the
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2017

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

  • Dovile Baziulyte-Paulaviciene,
  • Vitalijus Karabanovas,
  • Marius Stasys,
  • Greta Jarockyte,
  • Vilius Poderys,
  • Simas Sakirzanovas and
  • Ricardas Rotomskis

Beilstein J. Nanotechnol. 2017, 8, 1815–1824, doi:10.3762/bjnano.8.183

Graphical Abstract
  • still no information has been presented about uptake of these nanoparticles into different types of cancer cells [22]. Although different gadolinium chelates are widely used in clinics as contrast agents for magnetic resonance imaging (MRI), the literature for the last two years shows increased
  • (UC) emission intensity of Tween 80-coated nanoparticles in comparison with oleic acid coated UCNPs. In addition, the nonspecific uptake and distribution of non-targeted Tween 80-coated UCNPs in human MCF-7 and MDB-MA-231 breast cancer cells was visualized by using confocal fluorescence microscopy
  • uptake and cytotoxicity evaluation study showed that the UCNPs internalized into breast cancer cell lines and possessed low cytotoxicity and good biocompatibility. All these findings indicate that Tween 80-coated NaGdF4:Yb,Er@NaGdF4 UCNPs are a promising nanomaterial platform for imaging and detection in
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2017

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

  • Arūnas Jagminas,
  • Agnė Mikalauskaitė,
  • Vitalijus Karabanovas and
  • Jūrate Vaičiūnienė

Beilstein J. Nanotechnol. 2017, 8, 1734–1741, doi:10.3762/bjnano.8.174

Graphical Abstract
  • have a dramatic effect on the formation of the surface protein corona in the bloodstream that affects CoFe2O4@Met–Au NPs passive targeting and uptake into tumor cells. The elaborated functionalization of magnetic NPs with gold QDs represents a promising multi-task platform for linking magnetic NPs with
PDF
Album
Full Research Paper
Published 22 Aug 2017

Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Jean-François Colomer,
  • Alberto Verdini,
  • Luca Floreano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2017, 8, 1723–1733, doi:10.3762/bjnano.8.173

Graphical Abstract
  • fluorinated one (sample 4). However, a tendency to saturation towards a value of about 15 atom % of fluorine atoms grafted at the surface is observed, suggesting a stable configuration for C6.7F when storage is performed in ambient condition. In parallel, the O uptake is limited to few percent for all samples
  • short treatment, non-saturated defective sites are created and a subsequent increased oxygen uptake is observed due to air exposure; on the contrary, these are available for further fluorination when the sample is exposed to the plasma for longer time, in agreement with the corresponding increased F
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2017

Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

  • Jayita Patwari,
  • Samim Sardar,
  • Bo Liu,
  • Peter Lemmens and
  • Samir Kumar Pal

Beilstein J. Nanotechnol. 2017, 8, 1705–1713, doi:10.3762/bjnano.8.171

Graphical Abstract
  • the effective performance of the device [20][21]. The control of the uptake of different dyes, the prevention of unwanted reactions and unfavorable electron–hole recombination [22] affect the device performance. FRET has been proposed to be a more useful tool to achieve strong light harvesting over a
PDF
Album
Full Research Paper
Published 17 Aug 2017

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Antonín Brož,
  • Lucie Bačáková,
  • Pavla Štenclová,
  • Alexander Kromka and
  • Štěpán Potocký

Beilstein J. Nanotechnol. 2017, 8, 1649–1657, doi:10.3762/bjnano.8.165

Graphical Abstract
  • phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the
  • in cultures exposed and unexposed to photoluminescent nanodiamonds. This positive effect can be attributed to the fact that the mechanism of the ND uptake was clathrin-mediated endocytosis, that is, a physiological cellular mechanism for internalization of various bioactive substances from the
  • µg/mL, 300 µg/cm2). Live-cell imaging of diamond nanoparticle uptake Live-cell imaging (see Supporting Information File 1 and Supporting Information File 2 for full experimental data) confirmed the formation of DND aggregates in the suspension (10 µg/mL, 3 µg/cm2). Particle aggregates are collected
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Development of an advanced diagnostic concept for intestinal inflammation: molecular visualisation of nitric oxide in macrophages by functional poly(lactic-co-glycolic acid) microspheres

  • Kathleen Lange,
  • Christian Lautenschläger,
  • Maria Wallert,
  • Stefan Lorkowski,
  • Andreas Stallmach and
  • Alexander Schiller

Beilstein J. Nanotechnol. 2017, 8, 1637–1641, doi:10.3762/bjnano.8.163

Graphical Abstract
  • was observed. The microspheres showed a clear round shape with homogenous fluorescence. Some smaller microspheres were located within macrophages, likely because of endocytic uptake by the RAW264.7 macrophages (Figure 3). These results clearly show that NO550-loaded particles can be used to sense
PDF
Album
Supp Info
Letter
Published 08 Aug 2017

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

  • Gamze Varan,
  • Juan M. Benito,
  • Carmen Ortiz Mellet and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1457–1468, doi:10.3762/bjnano.8.145

Graphical Abstract
  • particle size of nanoparticulate drug delivery systems play a direct and important role on cellular uptake, systemic circulation, toxicity and stability of nanoparticles [37][38]. It was reported that nanoparticles smaller than 200 nm can escape recognition by the mononuclear phagocytic system (MPS) [39
  • ]. The prolonged circulation time for nanoparticles, t, is needed to escape from MPS uptake in order to reach the tumor tissue. The MPS is one of the most important factors in preventing the prolonged circulation, affecting the biodistribution of nanoparticles. In this way, more effective and safe
  • negatively charged molecules (e.g., sialic acid, cholesterol, phospholipid) on cell membrane easier than anionic nanoparticles [26][52]. In addition, the surface charge of nanoparticles play an important role on cellular uptake and subcellular localization [53][54]. Another reason for the cell viability
PDF
Album
Full Research Paper
Published 13 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • agents to the tumor site, while avoiding possible side effects. The development of novel drug delivery systems with reduced side effects is an important breakthrough and nanoparticles are promising in this field as they enable localized drug delivery to target sites and enhanced cellular uptake
  • –shell PCL nanoparticles to tumor targeting with docetaxel on a glioma model is very rare. Recently, active-targeted docetaxel-loaded PEG/PCL nanoparticles were prepared successfully for glioblastoma therapy by Gao et al. Cellular uptake and tumor spheroid uptake studies on U87 human glioma cells show
  • obtained by dual drug targeting. Besides that, the magnetic and ligand targeting resulted in elevated cellular uptake of nanocapsules in glioma treatment [26]. Yang et al. successfully obtained targeted and traceable core–shell nanoparticles for carmustine (BCNU) delivery. These systems prolonged the half
PDF
Album
Full Research Paper
Published 12 Jul 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • capacity of nanoparticles to enter and transport across such barriers. In this work, Caco-2 intestinal epithelial cells were used as a well-established model for the intestinal barrier, and the uptake, trafficking and translocation of model silica nanoparticles of different sizes were investigated using a
  • combination of imaging, flow cytometry and transport studies. Compared to typical observations in standard cell lines commonly used for in vitro studies, silica nanoparticle uptake into well-developed Caco-2 cellular barriers was found to be very low. Instead, nanoparticle association to the apical outer
  • membrane was substantial and these particles could easily be misinterpreted as internalised in the absence of imaging. Passage of nanoparticles through the barrier was very limited, suggesting that the low amount of internalised nanoparticles was due to reduced uptake into cells, rather than a considerable
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation

  • Kati Erdmann,
  • Jessica Ringel,
  • Silke Hampel,
  • Manfred P. Wirth and
  • Susanne Fuessel

Beilstein J. Nanotechnol. 2017, 8, 1307–1317, doi:10.3762/bjnano.8.132

Graphical Abstract
  • S1c,d) [28]. Consistently, the reduction of the chemotherapeutic dosage was more distinct in combinatory treatments with CNFs independent of the chemotherapeutic used. A combined application with carbon nanomaterials would also result in an improved cellular uptake of the active drug component as
  • and single-walled CNTs, respectively [26][28]. This elevation in the intracellular drug concentration also contributes to the circumvention of chemoresistance, which is major obstacle of chemotherapy in addition to systemic side effects and can be caused by decreased drug uptake, increased drug efflux
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • , but indicate a much higher photostability and brightness. As revealed by dynamic light scattering and ζ-potential measurements, all particle suspensions were stable in water and cell culture medium. In addition, uptake studies on A549 cells were performed, using confocal and stimulated emission
  • suitable for biological nanoparticle uptake experiments and have been used to determine the intracellular migration and nuclear penetration after uptake into Caco-2 cells [44]. They have also been used to analyse their intracellular agglomeration and their association with intracellular vesicles in living
  • A549 cells, as well as to quantify the number of internalised nanoparticles in these cells [45][46][47]. In another study small silica nanoparticles with diameters of 25 and 40 nm and modified with Atto647N dye were used to investigate the uptake in macrophages [48]. Herein we present the improved
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

  • Liga Saulite,
  • Dominyka Dapkute,
  • Karlis Pleiko,
  • Ineta Popena,
  • Simona Steponkiene,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2017, 8, 1218–1230, doi:10.3762/bjnano.8.123

Graphical Abstract
  • nanoparticles in imaging and targeted therapy of tumours. Due to their tumour-homing ability, nano-engineered mesenchymal stem cells (MSCs) could be utilized as vectors to deliver diagnostic and therapeutic nanoparticles into a tumour. In the present study, uptake and functional effects of carboxyl-coated
  • quantum dots QD655 were studied in human skin MSCs. The effect of QD on MSCs was examined using a cell viability assay, Ki67 expression analysis, and tri-lineage differentiation assay. The optimal conditions for QD uptake in MSCs were determined using flow cytometry. The QD uptake route in MSCs was
  • examined via fluorescence imaging using endocytosis inhibitors for the micropinocytosis, phagocytosis, lipid-raft, clathrin- and caveolin-dependent endocytosis pathways. These data showed that QDs were efficiently accumulated in the cytoplasm of MSCs after incubation for 6 h. The main uptake route of QDs
PDF
Album
Full Research Paper
Published 07 Jun 2017

Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification

  • Mohamed Hassoun,
  • Iwan W.Schie,
  • Tatiana Tolstik,
  • Sarmiza E. Stanca,
  • Christoph Krafft and
  • Juergen Popp

Beilstein J. Nanotechnol. 2017, 8, 1183–1190, doi:10.3762/bjnano.8.120

Graphical Abstract
  • multiplex capability due to narrow band widths. Enhancement of Raman signal of cells can be realized by (1) various techniques of nanoparticles delivery into cells, such as spontaneous uptake, microinjection, electroporation [15][16][17][18][19][20] or (2) binding of antibody-functionalized nanoparticles to
  • specific antigens [21][22][23]. The disadvantages of approach (1) include the poor reproducibility due to nonspecific binding of nanoparticles, the long time needed for nanoparticles uptake by cells, and the heterogeneity of nanoparticles inside cells. Approach (2) is complicated because of complex
PDF
Album
Full Research Paper
Published 01 Jun 2017

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
  • complexity associated with having to address the impact of particle size distribution and agglomeration on the fate and transport and bio-uptake of ENMs by ecological receptors. Given the complexity of quantifying environmental exposures to ENMs and the scarcity of toxicity data at the organism level
  • for multiple categories, assuming that the NOAEC for the ENM in STIS is ≥610 mg/m3. For ENMs of group 4, further sub-grouping is required according to the degree of mobility in air (dustiness) and in physiological fluids (dispersibility), as well as on the uptake, biopersistence, and biodistribution
  • , tissue, organ or organism as a proxy of pulmonary retention); uptake and biodistribution (e.g., evidence of alveolar uptake and subsequent distribution through the pulmonary system); and cellular (e.g., membrane damage including cationic phagolysosome damage, generation of reactive oxygen species (ROS
PDF
Album
Supp Info
Review
Published 05 May 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • difference is attributed to the methyl group of MTMS possibly rendering the material slightly more hydrophobic and thus reduces water uptake. The second weight loss between ca. 120 and 300 °C is assigned to condensation of residual silanol groups and further water evaporation. Possibly this is accompanied by
  • onset of significant nitrogen uptake and the parallel adsorption and desorption branches also indicate the presence of rather small pores and a relatively narrow pore size distribution [37]. Analysis of the SAXS data using the Porod-approach [37][38][39][40] confirms this, although pore sizes determined
  • identical wet IGs directly from the synthesis shows that the overall water uptake of the IG can reach ca. 12% when stored at ambient conditions rather than under vacuum. Even when dried, the IL alone already contains ca. 6% of water. Overall, TGA thus shows that the IGs consist of around 85 to 90% of IL by
PDF
Album
Full Research Paper
Published 29 Mar 2017

Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction

  • Anna Jagusiak,
  • Barbara Piekarska,
  • Tomasz Pańczyk,
  • Małgorzata Jemioła-Rzemińska,
  • Elżbieta Bielańska,
  • Barbara Stopa,
  • Grzegorz Zemanek,
  • Janina Rybarska,
  • Irena Roterman and
  • Leszek Konieczny

Beilstein J. Nanotechnol. 2017, 8, 636–648, doi:10.3762/bjnano.8.68

Graphical Abstract
  • length influences CNT toxicity and cellular uptake [22][23]. Surfactants commonly used for dispersion of CNTs include SDS, CTAB, Triton X-100 or sodium cholate [24][25][26]. A less known approach is based on the interaction of CNTs with a bis-azo dye – Congo red (CR) [27]. This original procedure was
PDF
Album
Full Research Paper
Published 16 Mar 2017
Graphical Abstract
  • with regard to SnO2-based sensing devices. It also shows that for sensor devices based on changes of the surface conductivity (resistive sensors) the oxygen uptake from ambient air is affecting the energy band structure. However, the process is reversible by de-gassing, which proves the ability of SnO2
PDF
Album
Full Research Paper
Published 27 Feb 2017

Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles

  • Olga Rotan,
  • Katharina N. Severin,
  • Simon Pöpsel,
  • Alexander Peetsch,
  • Melisa Merdanovic,
  • Michael Ehrmann and
  • Matthias Epple

Beilstein J. Nanotechnol. 2017, 8, 381–393, doi:10.3762/bjnano.8.40

Graphical Abstract
  • electron microscopy. Various cell types (HeLa, MG-63, THP-1, and hMSC) were incubated with fluorescently labelled proteins alone or with protein-loaded cationic and anionic nanoparticles. The cellular uptake was followed by light and fluorescence microscopy, confocal laser scanning microscopy (CLSM), and
  • flow cytometry. All proteins were readily transported into the cells by cationic calcium phosphate nanoparticles. Notably, only HTRA1 was able to penetrate the cell membrane of MG-63 cells in dissolved form. However, the application of endocytosis inhibitors revealed that the uptake pathway was
  • cellular uptake, calcium phosphate nanoparticles are dissolved in the acidified lysosomes and finally excreted in ionic form [28]. The high temperature requirement A (HtrA) family of serine proteases belongs to the core set of proteases found in cells and is widely conserved in single and multicellular
PDF
Album
Full Research Paper
Published 07 Feb 2017

Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

  • Veronika V. Tomina,
  • Inna V. Melnyk,
  • Yuriy L. Zub,
  • Aivaras Kareiva,
  • Miroslava Vaclavikova,
  • Gulaim A. Seisenbaeva and
  • Vadim G. Kessler

Beilstein J. Nanotechnol. 2017, 8, 334–347, doi:10.3762/bjnano.8.36

Graphical Abstract
  • the nature and fraction of the co-ligand. The methyl groups dilute the aminopropyl groups uniformly, opening for uptake of higher amounts of Cu2+ ions used as probes in relation to the amount of grafted amino functions. This should even improve potentially the reactivity used for further
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017

From iron coordination compounds to metal oxide nanoparticles

  • Mihail Iacob,
  • Carmen Racles,
  • Codrin Tugui,
  • George Stiubianu,
  • Adrian Bele,
  • Liviu Sacarescu,
  • Daniel Timpu and
  • Maria Cazacu

Beilstein J. Nanotechnol. 2016, 7, 2074–2087, doi:10.3762/bjnano.7.198

Graphical Abstract
  • surfaces are often used for biomedical applications (e.g., biosensing, hyperthermia and MRI) [10]. In biomedical applications, the morphology of the nanoparticle significantly influences both pharmacokinetics and cell uptake [11]. Nanoparticles are also preferred as fillers for polymers to induce certain
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

  • Gyeong-Hyeon Gwak,
  • Istvan Kocsis,
  • Yves-Marie Legrand,
  • Mihail Barboiu and
  • Jae-Min Oh

Beilstein J. Nanotechnol. 2016, 7, 1928–1935, doi:10.3762/bjnano.7.184

Graphical Abstract
  • (Figure 1g,h). The optimum GMP/LDH ratio, yielding single-phased GMP intercalated LDH, was determined to be 1:2, which was expected from the stoichiometry according to charge neutralization. From the adsorption isotherm, the GMP/LDH ratio of 1:2 resulted in 90% of GMP uptake compared to theoretical AEC
  • hybrid obtained at lower temperature was approximately 17.7 Å, which was 5.1 Å larger than for the single molecular orientation. Similar to the GMP adsorption at 80 °C, GMP uptake at 20 °C followed a Langmuir model. Although the Langmuir adsorption rate at 20 °C was slightly smaller than 80 °C, the
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2016

Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

  • Nadezhda M. Zholobak,
  • Anton L. Popov,
  • Alexander B. Shcherbakov,
  • Nelly R. Popova,
  • Mykhailo M. Guzyk,
  • Valeriy P. Antonovich,
  • Alla V. Yegorova,
  • Yuliya V. Scrypynets,
  • Inna I. Leonenko,
  • Alexander Ye. Baranchikov and
  • Vladimir K. Ivanov

Beilstein J. Nanotechnol. 2016, 7, 1905–1917, doi:10.3762/bjnano.7.182

Graphical Abstract
  • . Monitoring of cellular uptake of LbL-microcapsules decorated with O-dots Murine macrophages readily take up microcapsules decorated with O-dots. By using different sets of filters, it is possible to register the multicoloured fluorescence of phagocytized microcapsules in vitro (Figure 7). Thus, this property
  • , Russia). Cultures were incubated at 37 °C in air containing 5% CO2. Cells growing exponentially were harvested by a brief incubation with 0.25% trypsin–ethylenediaminetetraacetic acid (EDTA) solution (Gibco). The cellular uptake of microcapsules was studied using RAW 264.7 murine macrophage-like cell
  • (Carl Zeiss) confocal laser scanning microscope, equipped with a Plan-Apochromat 100×/1.4 Oil DIC objective. The excitation wavelength was 488 nm. Uptake of LbL-microcapsules Cells were seeded in a 35 mm μ-Dish (Ibidi, Germany) and cultured in an atmosphere containing 5% CO2, at 37 °C. Six hours after
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016

Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

  • Patrick Philipp,
  • Lukasz Rzeznik and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1749–1760, doi:10.3762/bjnano.7.168

Graphical Abstract
  • + irradiation of polyimide (PI) and polyethersulfone improves the moisture uptake in the films [7]. Further applications include metal adhesion on polymer surface [8], novel inorganic films by ion bombardment of polymers [9], surface morphology for biocompatibility [10], etch resistance of polymers [11
PDF
Album
Full Research Paper
Published 17 Nov 2016

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • is evident that each of the three analysed species adsorbs with the central macrocycle almost parallel to the substrate. Additionally, the authors report the hydrogen uptake from the substrate (hydroxyl groups, hydrogen bulk interstitials) and/or from the residual gas by the molecules in the first
PDF
Album
Commentary
Published 09 Nov 2016
Other Beilstein-Institut Open Science Activities