21 article(s) from Jones, Peter G
Graphical Abstract
Scheme 1: Synthesis of spirotetrahydrothiophenes 3 via non-concerted [3 + 2]-cycloadditions of thiocarbonyl y...
Scheme 2: Formal [3 + 2]-cycloadditions of thioketones and [4 + 3]-cycloadditions of thiochalcones with donor...
Scheme 3: Formal [3 + 2]-cycloadditions of dimethyl 2-substituted cyclopropane-1,1-dicarboxylates 5a–g with f...
Figure 1: Thermal ellipsoid plots of the molecular structures of cis-9c and trans-9d drawn using 50% probabil...
Scheme 4: Plausible mechanism for the formal [3 + 2]-cycloadditions of ferrocenyl thioketones 8 with D–A cycl...
Graphical Abstract
Figure 1: Bicyclic eunicellane-type diterpenes.
Figure 2: Synthetic eunicellane-type compounds with benzene partial structure.
Scheme 1: Access to ketoester 14 that did not cyclize to the ethyl vinyl ether under McMurry conditions.
Scheme 2: Synthesis of the 1,3-cyclohexadiene-containing eunicellane-type [8.4.0]bicycle 18 by McMurry coupli...
Figure 3: Preferred conformations of diastereomeric diols 18 and 19 including decisive NOESY correlations.
Scheme 3: Assembly of the envisaged cyclization precursor 27.
Scheme 4: Structure analysis of diastereomeric cyanohydrins 29 and 30.
Scheme 5: Formation of allenes 32 and 34 from sterically crowded propargylic alcohol 31.
Graphical Abstract
Figure 1: The molecular structure of tricyclic flavonoid 1.
Scheme 1: Synthesis of flavanones 4a–m and tricyclic flavonoids 5a–m. Conditions: i) EtOH, reflux, 4 h; ii) H2...
Figure 2: The syn and anti-isomers of flavanones 4.
Figure 3: Molecular structures of 4d (left) and 4f (right). Ellipsoids represent 50% probability levels [24].
Figure 4: Molecular structure of 5a (left, both independent molecules) and 5b (right, one of two independent ...
Graphical Abstract
Scheme 1: Synthesis of 2-N,N-dialkylamino-4-([2.2]paracyclophan-4-yl)-1,3-dithiol-2-ylium perchlorates 5.
Figure 1: Molecular structure of compound 4a. Ellipsoids represent 30% probability levels. Selected molecular...
Scheme 2: Synthesis of tetrathiafulvalenes 7.
Figure 2: Molecular structure of compound 6 (two independent molecules). Ellipsoids represent 30% probability...
Graphical Abstract
Figure 1: Prenylated indole alkaloids raputindole A from the rutaceous tree Raputia simulans and indiacen B f...
Scheme 1: Synthesis and SmI2-mediated reductive dimerization of natural product 5.
Scheme 2: Model visualizing the stereochemical course of the cyclopentanol formation leading to product 6. Po...
Scheme 3: Meyer–Schuster rearrangement of 13 and SmI2-mediated reductive [3 + 2] cycloaddition, followed by e...
Scheme 4: Nazarov-type cyclization of 14 to cyclopentanones 17 and 18; synthesis of verticillatine B (20).
Scheme 5: Synthesis and X-ray analysis of indiacen B (2, ORTEP drawing with ellipsoides at 50% probability).
Graphical Abstract
Scheme 1: The polyenes 2 stabilized by terminal tert-butyl substituents.
Scheme 2: The catalytic hydrogenation of diene 3.
Figure 1: The structure of compound 4 in the crystal. Ellipsoids correspond to 30% probability levels.
Scheme 3: The catalytic hydrogenation of triene 7.
Scheme 4: Addition of bromine to model dienes.
Scheme 5: Bromine addition to diene 3 and triene 7.
Scheme 6: Bromine addition to the higher oligoenes 19–22.
Figure 2: (a) The structure of compound 24 in the crystal. Ellipsoids correspond to 50% probability levels. (...
Figure 3: The structure of compound 25 in the crystal. This was a structure of poor quality and served only t...
Scheme 7: Epoxidation of triene 7 with MCPBA and DMDO.
Scheme 8: Epoxidation of tetraene 19 with MCPBA and DMDO.
Scheme 9: Diels–Alder addition of PTAD (36) to triene 7 and tetraene 19.
Figure 4: The structure of compound 37 in the crystal. Only one of two independent molecules is shown. Ellips...
Scheme 10: Diels-Alder addition of oligoenes 20 and 21 with PTAD (36).
Scheme 11: Addition of excess PTAD (36) to hexaene 21 and heptaene 22.
Scheme 12: TCNE addition to oligoolefins: from tetraene 19 to nonaene 42.
Figure 5: The structure of compound 43 in the crystal. Only one of two independent molecules is shown. Ellips...
Scheme 13: Photochemical experiments with tetraene 19.
Figure 6: The structure of compound 52 in the crystal. Ellipsoids correspond to 50% probability levels.
Graphical Abstract
Figure 1: A selection of highly substituted/functionalized [2.2]paracyclophanes.
Figure 2: A selection of [2.2]paracyclophanes carrying several nitrogen-containing substituents.
Scheme 1: The preparation of 4,12-diamino[2.2]paracyclophane (8).
Scheme 2: Preparation of cyclic and acyclic urethanes from 4,12-diisocyanato[2.2]paracyclophane (16).
Figure 3: (a, above): The molecule of compound 18 in the crystal; ellipsoids represent 50% probability levels...
Scheme 3: LiAlH4-reduction of crownophane 18.
Figure 4: (a, above): The molecule of compound 22 in the crystal; ellipsoids represent 30% probability levels...
Scheme 4: The preparation of several derivatives of 4,16-dicarboxy[2.2]paracyclophane (25) carrying N-contain...
Figure 5: The molecule of compound 26 in the crystal; ellipsoids represent 50% probability levels. Only the a...
Figure 6: (a, above): The molecule of compound 28 in the crystal; ellipsoids represent 50% probability levels...
Graphical Abstract
Scheme 1: From indigo to heteroindigo derivatives and all-carbon-indigo.
Scheme 2: Attempts to prepare the α-methylene ketones 12 and 13.
Figure 1: a) Both independent molecules of compound 13 in the crystal; ellipsoids represent 50% probability l...
Scheme 3: Dimerization of 13 under McMurry conditions.
Figure 2: a) The molecule of compound 17 in the crystal; ellipsoids represent 50% probability levels. Only th...
Scheme 4: Dimerization of indan-1-one (18) by a stepwise approach.
Scheme 5: Methylenation of 19 and bisalkylation of the product 23 with 1,2-dibromoethane.
Figure 3: The molecule of compound 23 in the crystal. Ellipsoids represent 50% probability levels. Only the a...
Figure 4: a) The molecule of compound 24 in the crystal. Ellipsoids represent 50% probability levels. Only th...
Figure 5: One of the two independent molecules of compound 25 in the crystal. Ellipsoids represent 50% probab...
Scheme 6: Cross-conjugated hydrocarbons by Thiele condensation.
Figure 6: a) The molecule of compound 30 in the crystal. Ellipsoids represent 50% probability levels. Only th...
Graphical Abstract
Scheme 1: Reactions of selenium dichloride and selenium dibromide with pseudo-geminal bis(acetylene) 1.
Scheme 2: Reaction of phenylselenyl chloride with pseudo-geminal bis(acetylene) 1.
Scheme 3: Plausible reaction mechanism for the addition of phenylselenyl chloride to pseudo-geminal bis(acety...
Scheme 4: Reactions of selenium dichloride and selenium dibromide with 4,13-bis(propyn-1-yl)[2.2]paracyclopha...
Figure 1: Molecular structure of compound 13. Ellipsoids represent 50% probability levels. Selected molecular...
Graphical Abstract
Scheme 1: [2.2]Paracyclophane derivatives with annelated alicyclic rings.
Scheme 2: The formation of the tetraketone 9 by a Diels–Alder addition.
Scheme 3: The possible structures of the aldols formed from 9.
Figure 1: Structure of 12·CDCl3 in the crystal. Ellipsoids represent 50% probability levels. Selected bond le...
Scheme 4: The mechanism of the aldol cyclization.
Scheme 5: Dehydration of the aldol 12.
Scheme 6: Dehydration of the aldol 15.
Figure 2: Structure of compound 21 in the crystal. Ellipsoids represent 50% probability levels. Selected bond...
Graphical Abstract
Scheme 1: Planar and layered ethynyl aromatics as building blocks for extended aromatic structures.
Scheme 2: Previous coupling experiments with pseudo-ortho-diethynyl[2.2]paracyclophane 4.
Scheme 3: Glaser coupling of pseudo-gem-diethynyl[2.2]paracyclophane 2.
Scheme 4: Glaser coupling of pseudo-ortho-diethynyl[2.2]paracyclophane, 4.
Figure 1: Above: The molecule of compound 11 in the crystal; ellipsoids represent 30% probability levels. Onl...
Figure 2: Above: The molecule of compound 12 in the crystal; ellipsoids represent 50% probability levels. Onl...
Scheme 5: Sonogashira coupling of aldehyde 13 with ortho-diiodobenzene (14).
Scheme 6: Preparation of benzologs of dimers 11/12.
Figure 3: Above: The molecule of compound 19 in the crystal; ellipsoids represent 50% probability levels. Sol...
Figure 4: Above: One of the three independent molecules of compound 20 in the crystal; ellipsoids represent 3...
Scheme 7: Cross dimerization of 1 and 4.
Figure 5: The molecule of compound 22 in the crystal; ellipsoids represent 50% probability levels.
Scheme 8: An attempt to prepare a biphenylenophane.
Figure 6: The molecule of compound 26 in the crystal; ellipsoids represent 50% probability levels.
Graphical Abstract
Figure 1: Bioactive molecules I [19], II [26], III & IV [21,22] with 3(2H)-furanone moiety.
Scheme 1: Pd-catalyzed synthesis of 3(2H)-furanones from activated alkenes [40].
Scheme 2: Pd-catalyzed synthesis of 3(2H)-furanone from tosylimine 1a.
Figure 2: Generalisation with aromatic and aliphatic imines (reaction conditions: 1 (1.0 equiv), 2 (1.1 equiv...
Figure 3: Thermal ellipsoid diagrams (50% probability levels) of 4-substituted-3(2H)-furanones 7 (above) and ...
Scheme 3: Mechanism of formation of the 3(2H)-furanone derivative from an imine.
Scheme 4: Pd-catalyzed synthesis of 3(2H)-furanone from diazoester 19a.
Figure 4: Generalisation with diazo esters (reaction conditions: 19 (1.0 equiv), 2 (1.1 equiv), Pd(PPh3)4 (5 ...
Scheme 5: Synthesis of aza-prostaglandin analogue.
Graphical Abstract
Figure 1: Structures of the strongly cytotoxic marine natural products malevamide D (1), isodolastatin H (2),...
Scheme 1: Total synthesis of malevamide D (1). a) DMSO (16 equiv), NEt3 (5 equiv), pyridine·SO3 (5 equiv), 0 ...
Scheme 2: Formation of oxazolylphosphate 18 on attempted DEPC-mediated coupling of dipeptide 15.
Scheme 3: Synthesis of tosyloximes (Z)-22 and (E)-22, X-ray structure of (E)-22. a) NH2OH·HCl (1.5 equiv), py...
Scheme 4: Synthesis of photo malevamide D 30. a) NH3(l), t-BuOMe, −40 °C, 2 h, rt, 16 h, quant. b) I2 (1.2 eq...
Figure 2: DSC curve of diazirine 25, heating rate 5 °C/min.
Graphical Abstract
Figure 1: Natural products having a 1,2,4-oxadiazole core.
Figure 2: Examples of 1,2,4-oxadiazole antitumorals.
Scheme 1: Common synthetic strategies toward 1,2,4-oxadiazoles; (a) amidoxime route; (b) 1,3 dipolar cycloadd...
Scheme 2: One-pot synthesis of 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1) by using the amidoxime route....
Figure 3: Molecular structure of 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1). Atoms are drawn as 50% the...
Figure 4: Packing diagram of compound 1. Hydrogen bonds are indicated as dashed lines.
Scheme 3: One-pot synthesis of 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1) by using the 1,3-dipolar cycl...
Figure 5: Molecular structure of 3-tert-butyl-5-(4-nitrophenyl)-1,2,4-oxadiazole (2). Atoms are drawn as 50% ...
Figure 6: Packing diagram of compound (2) showing C–H···O interactions.
Scheme 4: Synthesis of 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)pyrrolidine-2,5-dione (4).
Figure 7: Molecular structure of 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)pyrrolidine-2,5-dione (4). At...
Figure 8: Molecular structure of 4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4 oxobutanoate (5). Ato...
Figure 9: Packing diagram of compound (5). Dashed lines indicate hydrogen bonds.
Scheme 5: Synthesis of 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)-1H-pyrrole-2,5-dione (7).
Figure 10: Molecular structure of (Z)-4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4-oxobut-2-enoic ac...
Figure 11: Packing diagram of compound 6. Dashed lines indicate hydrogen bonds.
Figure 12: In vitro antitumor activity of compounds 1, 3–7 toward 11 human tumor cell lines.
Figure 13: Individual IC50 values [µM] of compounds 1, 3–7 in a panel of 11 human tumor cell lines.
Graphical Abstract
Scheme 1: The first members of the [n]radialene series and retrosynthesis for [5]radialene (3).
Scheme 2: Preparation of cis,cis,cis,cis-1,2,3,4,5-pentakis(hydroxymethyl)cyclopentane (16) according to Tolb...
Scheme 3: The preparation of derivatives of 16 better suited for nucleophilic substitution and elimination.
Figure 1: Structure of 19 in the crystal; ellipsoids represent 50% probability levels.
Scheme 4: Preparation of the pentaacetate 21 from 16.
Scheme 5: Preparation of the cycloheptadiene octaesters 24/25 according to Diels [11] and Le Goff [13], respectively,...
Figure 2: Structure of 24 in the crystal; ellipsoids represent 30% probability levels.
Figure 3: Structure of 26 in the crystal; ellipsoids represent 30% probability levels.
Scheme 6: Derivatives derived from the pentaester mixture 26/27.
Scheme 7: Bromination of 1,2,3,4,5-pentamethylcyclopenta-1,3-diene (8).
Figure 4: Structure of 32 in the crystal; ellipsoids represent 50% probability levels.
Graphical Abstract
Figure 1: Polycyclic flavonoids.
Scheme 1: The synthesis of flavonoids 6 and 7.
Figure 2: Diastereoisomers of flavonoids 6.
Figure 3: Molecular structure of flavonoid 6a in the solid state. Ellipsoids represent 50% probability levels...
Figure 4: Molecular structure of flavonoid 6b in the solid state. Ellipsoids represent 50% probability levels...
Figure 5: Molecular structure of flavonoid 7a in the solid state. Ellipsoids represent 50% probability levels....
Graphical Abstract
Scheme 1: β-diketonate complexes (left), homoleptic complexes (middle) and planned homoleptic complexes of eu...
Scheme 2: Pyrrole–pyridine-based structures synthesized in this study.
Scheme 3: Retrosynthetic approach for structures 1–3.
Scheme 4: Synthesis of the heteroaryl bromides used in the coupling reaction.
Scheme 5: Generation of the borate intermediate 21/22.
Scheme 6: In situ Suzuki coupling reactions of the heteroaryl bromides 8–10.
Figure 1: The structure of compound 1 in the crystal. Ellipsoids correspond to 50% probability levels.
Figure 2: Packing diagram of compound 1, viewed parallel to the y-axis in the range y ≈ 1/4. Hydrogen bonds a...
Figure 3: The structure of compound 2·CH3OH in the crystal. Ellipsoids correspond to 50% probability levels. ...
Figure 4: Packing diagram of compound 2·CH3OH showing the formation of inversion-symmetric "stacked" dimers. ...
Figure 5: The structure of compound 3·C2H5OH in the crystal. Ellipsoids correspond to 50% probability levels....
Figure 6: Packing diagram of compound 3·C2H5OH. Hydrogen bonds are shown as thick dashed lines. Hydrogen atom...
Graphical Abstract
Scheme 1: [2.2]Paracyclophanes as scaffolds for intraannular photodimerization reactions in solution.
Scheme 2: Stereospecific intramolecular [2+2]photoadditions using [2.2]paracyclophane spacers.
Scheme 3: Different conformations of pseudo-geminal divinyl[2.2]paracyclophane.
Scheme 4: Preparation of tetraene 11.
Scheme 5: Photolysis of tetraene 11.
Figure 1: The molecule of compound 13 in the crystal. Ellipsoids correspond to 30% probability levels.
Scheme 6: Photolysis of trans,trans-dienal 10.
Figure 2: The molecule of compound 15 in the crystal. Ellipsoids correspond to 30% probability levels.
Scheme 7: Cis–trans-isomerizations of the double bonds of the pseudo-geminal cyclophanes 11 and 19.
Scheme 8: Preparation of the vinylcyclopropanes 22–24.
Figure 3: The two independent molecules of compound Z,Z-22 in the crystal. Ellipsoids correspond to 50% proba...
Figure 4: The molecule of compound 23 in the crystal. Ellipsoids correspond to 50% probability levels.
Figure 5: The molecule of compound 24 in the crystal. Ellipsoids correspond to 30% probability levels.
Graphical Abstract
Scheme 1: Preparation of 2 and 4 by treatment of cinnamyl alcohol (1).
Figure 1: The crystal structure of compound 4. Ellipsoids correspond to 50% probability levels.
Figure 2: Packing diagram of compound 4 viewed perpendicular to (101). Hydrogen bonds are indicated by thick ...
Scheme 2: Suggested mechanism for the formation of 4.
Graphical Abstract
Scheme 1: Behaviour of benzanthrone (1) towards phenylmagnesium chloride (a), phenyl lithium (b), and bipheny...
Figure 1: 1H NMR spectra (200 MHz) of 4 in CDCl3 solution and time dependence.
Scheme 2: Proposed mechanism for the formation of 4 and its oxidation to 7.
Scheme 3: Conversion of the enol 4 under acidic conditions and reaction products.
Scheme 4: Proposed mechanism for the formation of spiro compound 11 and bicyclo[4.3.1]decane derivative 12.
Scheme 5: Proposed mechanism for the formation of 13.
Scheme 6: Proposed mechanism for the formation of 18 as a hydride source and further conversion to 7.
Figure 2: Ellipsoid representation (50% level) of compound 7 in the crystal.
Figure 3: Packing diagram of compound 7 viewed parallel to b; hydrogen bonds C-H···O are indicated by dashed ...
Figure 4: Ellipsoid representation (50% level) of compound 11 in the crystal.
Figure 5: Packing diagram of compound 11 viewed perpendicular to the bc plane; hydrogen bonds C-H···π are ind...
Figure 6: Ellipsoid representation (50% level) of compound 13 (d6-DMSO solvate) in the crystal. Hydrogen bond...
Figure 7: Packing diagram of compound 13 viewed parallel to c; DMSO molecules (including their hydrogen bonds...
Graphical Abstract
Figure 1: Schematic representation of a photochromic system. The reverse reaction can be a photochemical or t...
Figure 2: Photochromic reaction of pseudo-gem disubstituted tetraene [2.2]cyclophane 1 in acetonitrile, conc....
Figure 3: Molecular structure of 4,13-bis[(1E,3E)-4-(9-anthracenyl)-buta-1,3-dienyl][2.2]paracyclophane (2).
Scheme 1: Preparation of 2 (last step), using the Wittig reaction. The preparation of 3 has been described in...
Figure 4: Molecular structure of 2 in the crystal. Radii are arbitrary; only selected H atoms are shown.
Figure 5: Projection of the molecular structure of 2 exhibiting the closest internuclear distances (distances...
Figure 6: Electronic absorption spectra of 2 (conc. ca 10−4 M) in MCH (full line) and CH3CN (dotted line) at ...
Figure 7: Irradiation of 2 (2.6 × 10−5 M) in CH3CN at 400 nm at 20 °C. The spectra were recorded at various t...
Figure 8: Irradiation at 306 nm of the photoproduct 4 obtained at 400 nm in the same setup; the spectra were ...
Figure 9: Reversibility of the formation of the photoproduct 4 at 400 nm (40 min) and photodissociation of 4 ...
Figure 10: 1H NMR spectra (400 MHz, CDCl3). A: Compound 2, B: Compound 4.
Figure 11: Proposed structure of 4 (1,4 : 2′,3′-cycloadduct).