Search results

Search for "1,2-addition" in Full Text gives 56 result(s) in Beilstein Journal of Organic Chemistry.

Metal–ligand multiple bonds as frustrated Lewis pairs for C–H functionalization

  • Matthew T. Whited

Beilstein J. Org. Chem. 2012, 8, 1554–1563, doi:10.3762/bjoc.8.177

Graphical Abstract
  • related bonds, their potential utility lies in the fact that they can also react with unpolarized H–H and C–H bonds (including those of methane). The result is a 1,2-addition of X–H across the M═E bond to give a M(X)(EH) species, which may in some cases react further. A prominent example was reported by
  • the types of reactivity discussed thus far, there are several distinct routes to the functionalization of C–H (or E–H) bonds using metal–ligand multiply bonded FLPs. If C–H activation is effected by 1,2-addition across a M═E bond, then reductive elimination could result in a net C–H insertion of
  • a transformation has not been realized with the early metal complexes that are most reactive toward C–H bonds, probably because reductive elimination is strongly disfavored relative to the 1,2-elimination of alkane. Another possibility would be an initial 1,2-addition of a C–H bond across M═E
PDF
Album
Supp Info
Review
Published 18 Sep 2012

Multistep flow synthesis of vinyl azides and their use in the copper-catalyzed Huisgen-type cycloaddition under inductive-heating conditions

  • Lukas Kupracz,
  • Jan Hartwig,
  • Jens Wegner,
  • Sascha Ceylan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2011, 7, 1441–1448, doi:10.3762/bjoc.7.168

Graphical Abstract
  • protocol starts from alkenes, which are transformed by a 1,2-addition of iodine azide and then to the corresponding vinyl azides. Furthermore, for the first time we present the copper-mediated Huisgen-type “click” cycloaddition of vinyl azides with alkynes to yield vinyl triazoles under inductive-heating
PDF
Album
Supp Info
Video
Full Research Paper
Published 20 Oct 2011

When gold can do what iodine cannot do: A critical comparison

  • Sara Hummel and
  • Stefan F. Kirsch

Beilstein J. Org. Chem. 2011, 7, 847–859, doi:10.3762/bjoc.7.97

Graphical Abstract
  • developed a 5-endo approach to the iodocarbocyclization between ß-keto esters and non-terminal alkynes (Scheme 13b) [108]. Initially, 1,2-addition of iodine to alkynes such as 45 proved problematic, which was resolved by decreasing the molarity of the iodine in CH2Cl2 from 0.3 M to 0.05 M. This favored the
PDF
Album
Review
Published 22 Jun 2011

The arene–alkene photocycloaddition

  • Ursula Streit and
  • Christian G. Bochet

Beilstein J. Org. Chem. 2011, 7, 525–542, doi:10.3762/bjoc.7.61

Graphical Abstract
  • dependent on the electronic properties of the two reaction partners [14]. He reported that 1,2-addition usually prevails when a high degree of charge transfer is involved in the exciplex (ΔGET below 0.5 eV). A substituent at position 1 stabilizes the charge which develops on the aromatic ring, and therefore
PDF
Album
Review
Published 28 Apr 2011

A stable enol from a 6-substituted benzanthrone and its unexpected behaviour under acidic conditions

  • Marc Debeaux,
  • Kai Brandhorst,
  • Peter G. Jones,
  • Henning Hopf,
  • Jörg Grunenberg,
  • Wolfgang Kowalsky and
  • Hans-Hermann Johannes

Beilstein J. Org. Chem. 2009, 5, No. 31, doi:10.3762/bjoc.5.31

Graphical Abstract
  • observed, a compound type which is produced (derivative 6) when benzanthrone was treated with phenyl lithium [3]. The yield of 4 was not improved by addition of a copper(I) salt in catalytic amounts [4]. This procedure should have favoured the ratio of a 1,4- to a 1,2-addition product [5]. The enol 4 is
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2009

Efficient 1,4-addition of α-substituted fluoro(phenylsulfonyl)methane derivatives to α,β-unsaturated compounds

  • G. K. Surya Prakash,
  • Xiaoming Zhao,
  • Sujith Chacko,
  • Fang Wang,
  • Habiba Vaghoo and
  • George A. Olah

Beilstein J. Org. Chem. 2008, 4, No. 17, doi:10.3762/bjoc.4.17

Graphical Abstract
  • " nucleophiles that readily undergo 1,2-addition with Michael type acceptors instead of 1,4-addition [14][15][16]. Different strategies have been employed to achieve 1,4-addition, which is still percieved to be a challenge. For instance, Yamamoto [17] and Röschenthaler [18][19] have made use of bulky aluminum
  • Lewis acids to protect the carbonyl of Michael acceptors and thus sucessfully transferred the trifluoromethyl anion generated from the "Ruppert-Prakash reagent" (TMS-CF3) in a 1,4-manner rather than the favored 1,2-addition. Portella et al. [20] have shown that 1,4-addition of difluoroenoxysilanes to
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2008
Other Beilstein-Institut Open Science Activities