Search results

Search for "biosynthesis" in Full Text gives 285 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Confirmation of the stereochemistry of spiroviolene

  • Yao Kong,
  • Yuanning Liu,
  • Kaibiao Wang,
  • Tao Wang,
  • Chen Wang,
  • Ben Ai,
  • Hongli Jia,
  • Guohui Pan,
  • Min Yin and
  • Zhengren Xu

Beilstein J. Org. Chem. 2024, 20, 852–858, doi:10.3762/bjoc.20.77

Graphical Abstract
  • stereochemistry by X-ray crystallography using a hydrazone derivative of 1. Results and Discussion Our work commenced with the heterologous production of spiroviolene by E. coli using a recently developed isopentenol utilization pathway for the efficient supply of two C5 precursors for terpene biosynthesis
PDF
Album
Supp Info
Letter
Published 18 Apr 2024

Activity assays of NnlA homologs suggest the natural product N-nitroglycine is degraded by diverse bacteria

  • Kara A. Strickland,
  • Brenda Martinez Rodriguez,
  • Ashley A. Holland,
  • Shelby Wagner,
  • Michelle Luna-Alva,
  • David E. Graham and
  • Jonathan D. Caranto

Beilstein J. Org. Chem. 2024, 20, 830–840, doi:10.3762/bjoc.20.75

Graphical Abstract
  • noursei, an NNG-producing bacterium, did not reveal any NnlA homologs. Interestingly, four NMOs are annotated in the S. noursei genome. These enzymes could protect S. noursei from NNG toxicity during its biosynthesis. Meanwhile, we posit that NnlA protects non-NNG producing bacteria from exposure. In vivo
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2024

Discovery and biosynthesis of bacterial drimane-type sesquiterpenoids from Streptomyces clavuligerus

  • Dongxu Zhang,
  • Wenyu Du,
  • Xingming Pan,
  • Xiaoxu Lin,
  • Fang-Ru Li,
  • Qingling Wang,
  • Qian Yang,
  • Hui-Min Xu and
  • Liao-Bin Dong

Beilstein J. Org. Chem. 2024, 20, 815–822, doi:10.3762/bjoc.20.73

Graphical Abstract
  • genome mining and heterologous expression, we identified a cav biosynthetic gene cluster responsible for the biosynthesis of DMTs 2–4, along with a P450, CavA, responsible for introducing the C-2 and C-3 hydroxy groups. Furthermore, the substrate scope of CavA revealed its ability to hydroxylate drimenol
  • analogs. This discovery not only broadens the known chemical diversity of DMTs from bacteria, but also provides new insights into DMT biosynthesis in bacteria. Keywords: bacterial terpenoid; cytochrome P450s; drimane-type sesquiterpenoid; Streptomyces clavuligerus; terpenoid biosynthesis; Introduction
  • emphasize the potential of DMTs as substances with broad and significant biological activities. The biosynthetic pathways for DMTs, especially for calidoustene C, (+)-isoantrocin, and (−)-antrocin, have been extensively elucidated [6][13][14][15][16][17][18][19][20] (Figure 1b). In the biosynthesis of
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

Methodology for awakening the potential secondary metabolic capacity in actinomycetes

  • Shun Saito and
  • Midori A. Arai

Beilstein J. Org. Chem. 2024, 20, 753–766, doi:10.3762/bjoc.20.69

Graphical Abstract
  • , and the associated undiscovered secondary metabolite biosynthesis genes are called “silent” genes. This review outlines several approaches to further activate the metabolic potential of actinomycetes. Keywords: actinomycete; co-culture; heat shock metabolites (HSMs); secondary metabolites; silent
  • considered to have been completely characterized. This may be because the number of discovered compounds is small compared to the number of secondary metabolite biosynthesis genes harbored by actinomycetes [26][27][28]. For example, in Streptomyces avermitilis, 38 secondary metabolite biosynthetic gene
  • identified. These as yet undiscovered secondary metabolite biosynthesis genes are called “silent genes”, because they are either not expressed or their expression levels are low under normal culture conditions. A number of studies have reported methods to activate these genes, and many new compounds have
PDF
Album
Review
Published 10 Apr 2024

Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins

  • Zhongwei Hua,
  • Nan Liu and
  • Xiaohui Yan

Beilstein J. Org. Chem. 2024, 20, 741–752, doi:10.3762/bjoc.20.68

Graphical Abstract
  • cell suspension culture, heterologous biosynthesis, and total synthesis [16][17]. Crocins can be obtained from plant cell culture, but the production is prone to epigenetic silencing and toxic intermediates. The chemical synthesis of crocins is challenging due to the presence of numerous chiral centers
  • derivatives in microorganisms has been achieved by various teams. This article comprehensively reviews the research progress on the extraction, separation, pharmacological activity, biosynthesis, and synthetic biology of crocins. The biosynthesis of crocins is depicted in detail to shed light on the efficient
  • retinopathy [70][71][72][73][74][75][76][77][78][79][80]. Biosynthesis The biosynthetic pathways of crocins have recently been studied extensively. Crocin biosynthesis can be divided into three stages: 1) biosynthesis of lycopene (5) from simple carbon resources, 2) cleavage of lycopene (5), β-carotene (6
PDF
Album
Review
Published 09 Apr 2024

Substrate specificity of a ketosynthase domain involved in bacillaene biosynthesis

  • Zhiyong Yin and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2024, 20, 734–740, doi:10.3762/bjoc.20.67

Graphical Abstract
  • second ketosynthase of the polyketide synthase BaeJ involved in bacillaene biosynthesis (BaeJ-KS2). For this purpose, both enantiomers of a 13C-labelled N-acetylcysteamine thioester (SNAC ester) surrogate of the proposed natural intermediate of BaeJ-KS2 were synthesised, including an enzymatic step with
  • glutamate decarboxylase, and incubated with BaeJ-KS2. Substrate binding was demonstrated through 13C NMR analysis of the products against the background of various control experiments. Keywords: bacillaene; biosynthesis; enzyme mechanisms; isotopes; trans-AT polyketide synthases; Introduction Polyketides
  • only for the incorporation of one extender unit [2][3]. Although enzyme domains with various specialised catalytic functions can be found as integral part of polyketide synthases, three domain types are fundamental to their biosynthesis, resembling the same logic as observed for fatty acid biosynthesis
PDF
Album
Supp Info
Letter
Published 05 Apr 2024

Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization

  • Senze Qiao,
  • Zhongyu Cheng and
  • Fuzhuo Li

Beilstein J. Org. Chem. 2024, 20, 721–733, doi:10.3762/bjoc.20.66

Graphical Abstract
  • .20.66 Abstract Chemoenzymatic strategies that combine synthetic and enzymatic transformations offer efficient approaches to yield target molecules, which have been increasingly employed in the synthesis of bioactive natural products. In the biosynthesis of macrocyclic nonribosomal peptides, polyketides
  • for these natural products that aim to address the common issues in classical synthetic approaches and increase synthetic efficiencies, which have the potential to facilitate further pharmaceutical research. Keywords: biosynthesis; chemoenzymatic synthesis; macrocyclic peptides; macrocyclic
  • responsible for the structural diversity of natural products, both NRPS and PKS contain thioesterase (TE) domains in the final elongation module, which contribute to terminating biosynthesis [13][14]. Typically, TE domains cleave the thioester bond between the last PCP or ACP domain and the intermediate of
PDF
Album
Review
Published 04 Apr 2024

Genome mining of labdane-related diterpenoids: Discovery of the two-enzyme pathway leading to (−)-sandaracopimaradiene in the fungus Arthrinium sacchari

  • Fumito Sato,
  • Terutaka Sonohara,
  • Shunta Fujiki,
  • Akihiro Sugawara,
  • Yohei Morishita,
  • Taro Ozaki and
  • Teigo Asai

Beilstein J. Org. Chem. 2024, 20, 714–720, doi:10.3762/bjoc.20.65

Graphical Abstract
  • underexplored family of natural products. In the biosynthesis of fungal LRDs, bifunctional terpene cyclases (TCs) consisting of αβγ domains are generally used to synthesize the polycyclic skeletones of LRDs. Herein, we conducted genome mining of LRDs in our fungal genome database and identified a unique pair of
  • of TCs in fungi. Keywords: diterpenoids; fungi; genome mining; labdane; terpene cyclase; Introduction Terpenoids are a structurally diverse family of natural products, including more than 80,000 compounds [1]. In the biosynthesis of terpenoids, terpene cyclases (TCs) add structural diversity and
  • understand the evolutionary traits of TCs. Among terpenoids, labdane-related diterpenoids (LRDs) are an important class which includes biologically active molecules such as plant hormone gibberellins (Figure 1A). In their biosynthesis, class II TCs often synthesize copalyl diphosphate (CPP) or its
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Isolation and structure determination of a new analog of polycavernosides from marine Okeania sp. cyanobacterium

  • Kairi Umeda,
  • Naoaki Kurisawa,
  • Ghulam Jeelani,
  • Tomoyoshi Nozaki,
  • Kiyotake Suenaga and
  • Arihiro Iwasaki

Beilstein J. Org. Chem. 2024, 20, 645–652, doi:10.3762/bjoc.20.57

Graphical Abstract
  • . Polycavernoside E (1) exhibited moderate antitrypanosomal activity against Trypanosoma brucei rhodesiense. Furthermore, the isolation of polycavernoside E (1) from marine cyanobacteria provides additional evidence that marine cyanobacteria, and not red algae, are responsible for the biosynthesis of
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2024

Production of non-natural 5-methylorsellinate-derived meroterpenoids in Aspergillus oryzae

  • Jia Tang,
  • Yixiang Zhang and
  • Yudai Matsuda

Beilstein J. Org. Chem. 2024, 20, 638–644, doi:10.3762/bjoc.20.56

Graphical Abstract
  • , demonstrating the effectiveness of our approach in the generation of structural analogues of meroterpenoids. Keywords: biosynthesis; meroterpenoids; natural products; pathway engineering; terpene cyclases; Introduction Meroterpenoids are a class of natural products partially biosynthesized from a terpenoid
  • strong inosine 5-monophosphate dehydrogenase inhibitor [6]. The biosynthesis of fungal meroterpenoids has garnered interest in the organic chemistry field due to their structural complexity and associated intriguing enzymatic reactions and has thus been extensively researched for over a decade, providing
  • a general understanding of their biosynthesis [7][8]. Polyketide–terpenoid hybrids are among the largest families of meroterpenoids. Orsellinic acid, an aromatic polyketide, and its analogues have been commonly identified as polyketide components in fungal meroterpenoids. Notably, 3,5
PDF
Album
Supp Info
Letter
Published 20 Mar 2024

Chemical and biosynthetic potential of Penicillium shentong XL-F41

  • Ran Zou,
  • Xin Li,
  • Xiaochen Chen,
  • Yue-Wei Guo and
  • Baofu Xu

Beilstein J. Org. Chem. 2024, 20, 597–606, doi:10.3762/bjoc.20.52

Graphical Abstract
  • cytochrome P450, pyridoxal-dependent decarboxylase, glutamine synthase, and tryptophan dimethyltransferase (Figure 5). These genes are likely crucial for the biosynthesis of the newly isolated alkaloids, 1 and 2. In examining the XL-F41 genome for methyltransferase domain-containing BGCs, we found a
  • -monooxygenase, to form quinoline rings [26]. Quinine is frequently cited as one of the primary forms of quinoline rings in secondary metabolic pathways. Francesco Trenti et al. [27] studied some of the biosynthesis processes of quinine, in which enzymes involved are much more complex than primary metabolism
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2024

A myo-inositol dehydrogenase involved in aminocyclitol biosynthesis of hygromycin A

  • Michael O. Akintubosun and
  • Melanie A. Higgins

Beilstein J. Org. Chem. 2024, 20, 589–596, doi:10.3762/bjoc.20.51

Graphical Abstract
  • aminocyclitol moieties. The biosynthesis of the aminocyclitol has been proposed to proceed through six enzymatic steps from glucose 6-phosphate through myo-inositol to the final methylenedioxy-containing aminocyclitol. Although there is some in vivo evidence for this proposed pathway, biochemical support for
  • family containing Hyg17 and discuss genome mining strategies that target this protein family to identify biosynthetic clusters for natural product discovery. Keywords: aminocyclitol; biosynthesis; hygromycin A; inositol dehydrogenase; myo-inositol; Introduction Hygromycin A is a natural product that
  • essential for in vivo antimicrobial activity suggesting a distinct biological function independent of ribosome binding. The hygromycin A biosynthetic gene cluster has been identified and the biosynthesis of the aminocyclitol has been proposed (Figure 1) [8][9]. Starting from glucose-6-phosphate, the pathway
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2024

Recent developments in the engineered biosynthesis of fungal meroterpenoids

  • Zhiyang Quan and
  • Takayoshi Awakawa

Beilstein J. Org. Chem. 2024, 20, 578–588, doi:10.3762/bjoc.20.50

Graphical Abstract
  • members exhibit beneficial biological activities. This mini-review highlights recent advances in the engineered biosynthesis of meroterpenoid compounds with C15 and C20 terpenoid moieties, with the reconstruction of fungal meroterpenoid biosynthetic pathways in heterologous expression hosts and the
  • of acyl-CoA: cholesterol acyltransferase [4]. In this mini-review, we focus on the fungal meroterpenoids biosynthesis, especially terpenonid cyclizations and post-cyclization modifications, which mostly contribute to the skeletal diversity. Several terpenoid cyclases and αKG-dependent dioxygenases
  • will be discussed as examples of engineering biosynthetic pathways and key enzymes involved in fungal meroterpenoid biosynthesis. Furthermore, a construction of the artificial biosynthetic pathway composed of the fungal meroterpenoids pathway and the pathway from other species, in fungal host
PDF
Album
Review
Published 13 Mar 2024

Development of a chemical scaffold for inhibiting nonribosomal peptide synthetases in live bacterial cells

  • Fumihiro Ishikawa,
  • Sho Konno,
  • Hideaki Kakeya and
  • Genzoh Tanabe

Beilstein J. Org. Chem. 2024, 20, 445–451, doi:10.3762/bjoc.20.39

Graphical Abstract
  • biosynthesis by using small molecules can help to elucidate their natural functions and their potential as therapeutic targets. NRPs are synthesized by large, versatile, and multifunctional proteins called nonribosomal peptide synthetases (NRPSs), which are composed of multiple modules and subdivided domains
  • penetrate cells. The application of this new scaffold to NRPS inhibitors involved in the production of virulence factors could thus facilitate the development of new antibiotics. Biosynthesis of gramicidin S. Modules comprise the PCP, A, E, C, and TE domains. PCP, peptidyl carrier protein; A1, ʟ-Phe
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
  • related environments [8]. The mechanism of action involves the binding of BIMs to the penicillin-restricting protein PBP2a which inhibits the biosynthesis of the bacterial cell wall, making the treatment feasible without any toxicity to human cells [9][10]. The applications of BIMs have also been extended
PDF
Album
Review
Published 22 Feb 2024

Discovery of unguisin J, a new cyclic peptide from Aspergillus heteromorphus CBS 117.55, and phylogeny-based bioinformatic analysis of UngA NRPS domains

  • Sharmila Neupane,
  • Marcelo Rodrigues de Amorim and
  • Elizabeth Skellam

Beilstein J. Org. Chem. 2024, 20, 321–330, doi:10.3762/bjoc.20.32

Graphical Abstract
  • of the UngA NRPS were analyzed in an attempt to understand the lack of substrate specificity observed. Keywords: adenylation domain; condensation domain; fungal non-ribosomal peptide synthetase; heptapeptide; unguisin biosynthesis; Introduction Unguisins are a small family of fungal cyclic
  • small peptides [3][4][9], however, unguisin A has been shown to bind a series of anions [10]. Recently the biosynthesis of unguisins A and B from Aspergillus violaceofuscus CBS 115571 was reported [5]. A seven module non-ribosomal peptide synthetase (NRPS; UngA) was heterologously expressed in
  • , from Aspergillus heteromorphus CBS 117.55. We also perform bioinformatic analysis of the A and C domains of the UngA NRPS enzymes involved in their biosynthesis to try and rationalize the relaxed substrate specificity observed in this family of heptapeptides. Results and Discussion The cultivation of A
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2024

Optimizations of lipid II synthesis: an essential glycolipid precursor in bacterial cell wall synthesis and a validated antibiotic target

  • Milandip Karak,
  • Cian R. Cloonan,
  • Brad R. Baker,
  • Rachel V. K. Cochrane and
  • Stephen A. Cochrane

Beilstein J. Org. Chem. 2024, 20, 220–227, doi:10.3762/bjoc.20.22

Graphical Abstract
  • analogues through the incorporation of alternative building blocks at different stages of synthesis. Keywords: chemical glycosylation; lipid II; peptidoglycan; polyprenyls; total synthesis; Introduction Lipid II (Figure 1) is an essential bacterial glycolipid involved in peptidoglycan biosynthesis [1]. It
  • is synthesized on the inner leaflet of the cytoplasmic membrane, before translocation to the outer leaflet, where it is then used as the monomeric building block of peptidoglycan biosynthesis. Lipid II is a validated antibiotic target for clinically prescribed antibiotics including vancomycin and
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Identification of the p-coumaric acid biosynthetic gene cluster in Kutzneria albida: insights into the diazotization-dependent deamination pathway

  • Seiji Kawai,
  • Akito Yamada,
  • Yohei Katsuyama and
  • Yasuo Ohnishi

Beilstein J. Org. Chem. 2024, 20, 1–11, doi:10.3762/bjoc.20.1

Graphical Abstract
  • biosynthesis by heterologous expression of the cma cluster and in vitro enzyme assays using recombinant Cma proteins. The ATP-dependent diazotase CmaA6 catalyzed the diazotization of both 3-aminocoumaric acid and 3-aminoavenalumic acid using nitrous acid in vitro. In addition, the high efficiency of the CmaA6
  • reaction enabled us to perform a kinetic analysis of AvaA7, which confirmed that AvaA7 catalyzes the denitrification of 3-diazoavenalumic acid in avenalumic acid biosynthesis. This study deepened our understanding of the highly reducing type II polyketide synthase system as well as the diazotization
  • -dependent deamination pathway for the production of avenalumic acid or p-coumaric acid. Keywords: actinomycetes; avenalumic acid; biosynthesis; p-coumaric acid; polyketides; Introduction The genomes of microorganisms possess diverse biosynthetic gene clusters (BGCs) to produce natural products [1]. In
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Anion–π catalysis on carbon allotropes

  • M. Ángeles Gutiérrez López,
  • Mei-Ling Tan,
  • Giacomo Renno,
  • Augustina Jozeliūnaitė,
  • J. Jonathan Nué-Martinez,
  • Javier Lopez-Andarias,
  • Naomi Sakai and
  • Stefan Matile

Beilstein J. Org. Chem. 2023, 19, 1881–1894, doi:10.3762/bjoc.19.140

Graphical Abstract
  • ][56][57]. Anion–π catalysis on fullerenes has been introduced in 2017 [12]. Fullerene anion–π catalysts were developed with the benchmark reaction introduced two years earlier (Figure 2) [2]. In this reaction, at the beginning of all biosynthesis, finetuned malonic acid half thioesters 4 [58][59][60
  • catalysis. Moreover, epoxide opening polyether cyclizations are among the most impressive cascade reactions in nature [71][72][73]. Best known is the hypothetical cascade XII in the biosynthesis of brevetoxin B [74]. It affords eleven fused ethers by violating the Eschenmoser–Dunitz–Baldwin guidelines [75
PDF
Album
Review
Published 12 Dec 2023

Sulfur-containing spiroketals from Breynia disticha and evaluations of their anti-inflammatory effect

  • Ken-ichi Nakashima,
  • Naohito Abe,
  • Masayoshi Oyama,
  • Hiroko Murata and
  • Makoto Inoue

Beilstein J. Org. Chem. 2023, 19, 1604–1614, doi:10.3762/bjoc.19.117

Graphical Abstract
  • the onset of anti-inflammatory action. Conclusion The biosynthesis of breynins with novel skeletons remains poorly understood, especially with respect to the sulfur source. In this study, we isolated a new aglycone, probreynogenin (3), together with a known sesquiterpenoid, phyllaemblic acid (5
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

Synthesis and biological evaluation of Argemone mexicana-inspired antimicrobials

  • Jessica Villegas,
  • Bryce C. Ball,
  • Katelyn M. Shouse,
  • Caleb W. VanArragon,
  • Ashley N. Wasserman,
  • Hannah E. Bhakta,
  • Allen G. Oliver,
  • Danielle A. Orozco-Nunnelly and
  • Jeffrey M. Pruet

Beilstein J. Org. Chem. 2023, 19, 1511–1524, doi:10.3762/bjoc.19.108

Graphical Abstract
  • often attributed to high binding affinity to DNA, interference with protein biosynthesis, induction of membrane leakage, and affecting GTPase activity in bacteria cell division [12][13][14][15]. Recent reports have also pointed to inhibition of the ‘filamenting temperature-sensitive mutant Z’ (FtsZ
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2023

Unraveling the role of prenyl side-chain interactions in stabilizing the secondary carbocation in the biosynthesis of variexenol B

  • Moe Nakano,
  • Rintaro Gemma and
  • Hajime Sato

Beilstein J. Org. Chem. 2023, 19, 1503–1510, doi:10.3762/bjoc.19.107

Graphical Abstract
  • completed through bridging from the exomethylene group, and (iii) the annulation from the exomethylene group proceeds in a barrier-free manner. Keywords: biosynthesis; carbocation; cation–π interaction; DFT; terpene; Introduction Terpene/terpenoids are most abundant natural products in nature, more than
  • as the C–H–π interaction between the carbocation intermediate and the Phe residue of terpene cyclase in the biosynthesis of sesterfisherol [21], and the intricated rearrangement reaction mechanism promoted by the equilibrium state of the homoallyl cation and the cyclopropylcarbinyl cation in the
  • biosynthesis of trichobrasilenol [22], by combined methods of computational and experimental chemistry. Recently, Dickschat et al. reported the synthesis of a novel diterpene compound, variexenol B, using a substrate analogue called iso-GGPP (Scheme 1) [23]. This biosynthetic pathway has two interesting
PDF
Album
Supp Info
Letter
Published 28 Sep 2023

Functions of enzyme domains in 2-methylisoborneol biosynthesis and enzymatic synthesis of non-natural analogs

  • Binbin Gu,
  • Lin-Fu Liang and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2023, 19, 1452–1459, doi:10.3762/bjoc.19.104

Graphical Abstract
  • Binbin Gu Lin-Fu Liang Jeroen S. Dickschat Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany 10.3762/bjoc.19.104 Abstract Two aspects of the biosynthesis of the non-canonical terpene synthase for 2-methylisoborneol have been
  • of the 2-methylisoborneol synthase was investigated through enzyme incubations with several substrate analogs, giving access to two C12 monoterpenoids. Implications on the stereochemical course of the terpene cyclisation by 2-methylisoborneol synthase are discussed. Keywords: biosynthesis; enzymes
  • unpleasant off-flavour [19][20]. The biosynthesis of 1 has been extensively studied. The initial hypothesis that 1 could be a degraded sesquiterpene [3] was not confirmed through isotopic labelling experiments that rather pointed to a methylated monoterpene [10][21]. Based on these experiments a biosynthetic
PDF
Album
Supp Info
Letter
Published 22 Sep 2023

Functional characterisation of twelve terpene synthases from actinobacteria

  • Anuj K. Chhalodia,
  • Houchao Xu,
  • Georges B. Tabekoueng,
  • Binbin Gu,
  • Kizerbo A. Taizoumbe,
  • Lukas Lauterbach and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2023, 19, 1386–1398, doi:10.3762/bjoc.19.100

Graphical Abstract
  • ; biosynthesis; enzymes; NMR spectroscopy; terpenes; Introduction Terpene synthases are remarkable enzymes that can convert acyclic and achiral oligoprenyl pyrophosphates into terpene hydrocarbons or alcohols of high structural complexity. These enzymatic reactions are initiated by ionisation of the substrate
  • recently identified in which sesquiterpenes from bacteria showed an enantiomeric relationship to plant compounds [36]. The enzyme from K. kofuensis represents the first terpene synthase for the biosynthesis of 10 and was thus identified as Kutzneria kofuensis (+)-δ-Cadinol Synthase (KkdCS). A few closely
  • ). The optical rotation of [α]D25 = –9.4 (c 0.64, CH2Cl2) pointed to the same enantiomer as in the plant Viguiera oblongifolia ([α]D24 = –8 (c 0.4, CHCl3)) [43]. A (−)-amorpha-4,11-diene synthase (ADS) is also known from Artemisia annua and catalyses the first committed step in the biosynthesis of
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • distribution is heterogeneous with abundant amount (up to 50% of the phosphoethanolamine based lipids) in central nervous system (mainly as PE-plasmalogen), in skeletal muscle, heart, kidney and lungs [13]. At a cellular scale, the biosynthesis of ELs is initiated in peroxisome and maturation is completed in
  • ) KO mouse which is a mouse model that stop the biosynthesis of ELs [22]. In that case, a reduction of the levels of various neurotransmitters were evidenced likely due to an alteration of the transport efficacy assumed by the synaptic vesicles. The phenotype of these KO mouse shows impaired social
PDF
Album
Review
Published 08 Sep 2023
Other Beilstein-Institut Open Science Activities