Search results

Search for "propiolamides" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

New one-pot synthesis of 4-arylpyrazolo[3,4-b]pyridin-6-ones based on 5-aminopyrazoles and azlactones

  • Vladislav Yu. Shuvalov,
  • Ekaterina Yu. Vlasova,
  • Tatyana Yu. Zheleznova and
  • Alexander S. Fisyuk

Beilstein J. Org. Chem. 2023, 19, 1155–1160, doi:10.3762/bjoc.19.83

Graphical Abstract
  • aldehyde with thioglycolic acid and aminopyrazole, followed by the extrusion of sulfur from the resulting thiazepine [20] (method C). The three-stage synthesis of 4-arylpyrazolo[3,4-b]pyridin-6-ones, involving the preparation of 3-aryl-N-(1H-pyrazol-5-yl)propiolamides (method D), also leads to the
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2023

Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide–alkyne cycloaddition

  • Maryna O. Mazur,
  • Oleksii S. Zhelavskyi,
  • Eugene M. Zviagin,
  • Svitlana V. Shishkina,
  • Vladimir I. Musatov,
  • Maksim A. Kolosov,
  • Elena H. Shvets,
  • Anna Yu. Andryushchenko and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2021, 17, 678–687, doi:10.3762/bjoc.17.57

Graphical Abstract
  • mixture. Therefore, several alternative procedures were tested, and refluxing the mixture of the starting materials in DCM in an oil bath for 2–3 days with further purification gave the best results. Gratifyingly, in most cases N-(1-(2-azidophenyl)propiolamides 6 were obtained in moderate yields (Scheme 3
  • and yield. Quantitative yields were also observed when N-phenyl (6abb) and N-benzyl (6aeb) propiolamides were subjected to the cyclization (see results on Scheme 5). Performing the IAAC for internal alkynes under non-catalyzed conditions is more challenging due to the reduced reactivity of the triple
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2021

1,5-Phosphonium betaines from N-triflylpropiolamides, triphenylphosphane, and active methylene compounds

  • Vito A. Fiore,
  • Chiara Freisler and
  • Gerhard Maas

Beilstein J. Org. Chem. 2019, 15, 2603–2611, doi:10.3762/bjoc.15.253

Graphical Abstract
  • Vito A. Fiore Chiara Freisler Gerhard Maas Institute of Organic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany 10.3762/bjoc.15.253 Abstract N-Phenyl-N-(trifluoromethylsulfonyl)propiolamides react with triphenylphosphane in the presence of various active methylene
  • -Michael reaction; propiolamides; Introduction Beside the well-known phosphonium ylides (Wittig ylides, methylenephosphoranes), various other types of zwitterions containing a tetravalent phosphonium moiety (phosphonium betaines) exist. They are often considered as reaction intermediates, but reports on
  • was obtained from 1,1,1,5,5,5-hexafluoropropane-2,4-dione (pKa 2.30 in DMSO) and dimedone (pKa 11.42 in DMSO). Figure 1 also shows that 3-aryl- as well as various 3-alkyl-substituted propiolamides 1 furnish betaines 3 in high yields. A separate case was observed for 3-trimethylsilylpropiolamide 1f
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2019

Oxidative radical ring-opening/cyclization of cyclopropane derivatives

  • Yu Liu,
  • Qiao-Lin Wang,
  • Zan Chen,
  • Cong-Shan Zhou,
  • Bi-Quan Xiong,
  • Pan-Liang Zhang,
  • Chang-An Yang and
  • Quan Zhou

Beilstein J. Org. Chem. 2019, 15, 256–278, doi:10.3762/bjoc.15.23

Graphical Abstract
  • transformation. In 2017, Reddy and co-workers reported the first radical cyclization of propiolamides (131 and 133) with cyclopropanols 91 for the synthesis of azaspiro[4.5]deca-3,6,9-triene-2,8-diones 132 and 6,7-dihydro-3H-pyrrolo[2,1-j]quinoline-3,9(5H)-diones 134 (Scheme 35) [115]. Interestingly, this
  • cyclopropanols with propiolamides. The ring-opening and [3 + 2]-annulation of cyclopropanols with α,β-unsaturated aldehydes. Cu(II)-catalyzed ring-opening/arylation of cyclopropanols with aromatic nitrogen heterocyles. Ag(I)-catalyzed ring-opening and difluoromethylthiolation of cyclopropanols with PhSO2SCF2H
PDF
Album
Review
Published 28 Jan 2019

Reactions of N,3-diarylpropiolamides with arenes under superelectrophilic activation: synthesis of 4,4-diaryl-3,4-dihydroquinolin-2(1H)-ones and their derivatives

  • Larisa Yu. Gurskaya,
  • Diana S. Belyanskaya,
  • Dmitry S. Ryabukhin,
  • Denis I. Nilov,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2016, 12, 950–956, doi:10.3762/bjoc.12.93

Graphical Abstract
  • of 3-aryl-N-(aryl)propiolamides with arenes in TfOH at room temperature for 0.5 h led to 4,4-diaryl-3,4-dihydroquinolin-2-(1H)-ones in yields of 44–98%. The obtained dihydroquinolinones were further transformed into the corresponding N-acyl or N-formyl derivatives. For the latter, the
  • ][12][13][14], we continued to develop some methods for the syntheses of quinoline derivatives. Previously we showed, just in a few examples, that some 3-aryl-N-(aryl)propiolamides reacted with benzene under the action of Brønsted or Lewis superacids affording 4-aryl-4-phenyl-3,4-dihydroquinolin-2(1H
  • )-ones [12][13]. The main goal of this work was a systematic study on reactions of 3-aryl-N-(aryl)propiolamides with arenes under the action of the Brønsted superacid TfOH (CF3SO3H, triflic acid), strong Lewis acids AlX3 (X = Cl, Br), or the conjugate Brønsted–Lewis superacid TfOH–SbF5. Results and
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2016
Other Beilstein-Institut Open Science Activities