Search results

Search for "radical cation" in Full Text gives 181 result(s) in Beilstein Journal of Organic Chemistry.

Visible-light-driven NHC and organophotoredox dual catalysis for the synthesis of carbonyl compounds

  • Vasudevan Dhayalan

Beilstein J. Org. Chem. 2025, 21, 2584–2603, doi:10.3762/bjoc.21.200

Graphical Abstract
  • -rich and electron-poor substituents. This reaction was carried out between arylcyclopropanes 5 and acyl fluoride 4 in the presence of NHC (10 mol %) and 4CzIPN (5 mol %). Mechanistic studies showed that the cascade proceeds via nucleophilic ring-opening of a cyclopropyl radical cation D with subsequent
  • substrate 7, generating the aryl radical cation C along with the formation of corresponding radical anion of the photocatalyst (PC•–). The reduction potentials are (E1/2(P/P•–) = –1.37V vs SCE for [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ and –1.21V vs SCE for 4CzIPN as an organophotocatalyst. This method permits the C
  • was described. Aromatic C(sp2)–H bond acylation was achieved by dual catalysis through cooperative NHC and organophotoredox-catalyzed C–C cross-coupling of a benzo-fused aryl radical cation C with stable ketyl radical B as the key step. LED irradiation of photocatalyst leads to photoexcited PC*, which
PDF
Album
Review
Published 21 Nov 2025

Ni-promoted reductive cyclization cascade enables a total synthesis of (+)-aglacin B

  • Si-Chen Yao,
  • Jing-Si Cao,
  • Jian Xiao,
  • Ya-Wen Wang and
  • Yu Peng

Beilstein J. Org. Chem. 2025, 21, 2548–2552, doi:10.3762/bjoc.21.197

Graphical Abstract
  • (2) and C (3), featuring a visible light-catalyzed radical cation cascade for the formation of the C8–C8′ and C2–C7′ bonds [6]. Subsequently, they improved the reaction conditions to achieve the racemic synthesis of aglacins A (1) and E (4) as well [7]. In 2021, the Gao group described the total
PDF
Album
Supp Info
Letter
Published 18 Nov 2025

Synthesis of the tetracyclic skeleton of Aspidosperma alkaloids via PET-initiated cationic radical-derived interrupted [2 + 2]/retro-Mannich reaction

  • Ru-Dong Liu,
  • Jian-Yu Long,
  • Zhi-Lin Song,
  • Zhen Yang and
  • Zhong-Chao Zhang

Beilstein J. Org. Chem. 2025, 21, 2470–2478, doi:10.3762/bjoc.21.189

Graphical Abstract
  • current interest in the synthesis of complex natural products via photochemical reactions, we decided to achieve such an unusual bond cleavage (Figure 1a, path A) of cyclobutenone by generating a radical cation species via a PET reaction. The synthetic plan is shown in Figure 1c and includes a PET
  • -initiated [2 + 2] cyclization of the tryptamine-substituted cyclobutenone K to form the radical cation L, which has a highly functionalized and rigid bicyclo[2.2.0]hexane core. Fragmentation of the C3–C19 bond would afford a redox-active intermediate which upon further reductive quenching would lead to the
  • formation of IN1. The radical cation IN1 served as the reference point for DFT investigations. As illustrated in Figure 2a, facilitated by a favorable radical cation–π interaction [31], IN1 proceeds to the first radical addition transition state (TS1), with an energy barrier of 8.3 kcal/mol. This leads to
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2025

Electrochemical cyclization of alkynes to construct five-membered nitrogen-heterocyclic rings

  • Lifen Peng,
  • Ting Wang,
  • Zhiwen Yuan,
  • Bin Li,
  • Zilong Tang,
  • Xirong Liu,
  • Hui Li,
  • Guofang Jiang,
  • Chunling Zeng,
  • Henry N. C. Wong and
  • Xiao-Shui Peng

Beilstein J. Org. Chem. 2025, 21, 2173–2201, doi:10.3762/bjoc.21.166

Graphical Abstract
  • occurred to give a radical cation PhSeSePh•+ at the anode. The subsequent cleavage of Se–Se bond formed a radical PhSe• and a cation PhSe+. Further additional oxidation of PhSe• yielded another PhSe+, which worked as the major reactive species and quickly added to C≡C in 13a to form intermediate A. Finally
  • phenylselenium cation C and phenylselenium radical B through radical cation species A. Simultaneously, the cathodic reduction of 17a generated anion D and radical B. Then, addition of B with the alkyne portion in 16a gave a radical intermediate E, which proceeded a one-electron oxidation followed by nucleophilic
  • . Coordination of 29a with I− produced the iodonium species A, which was transformed to vinyl iodide B by intramolecular 5-exo-dig iodocyclization. The deprotonation/anodic oxidation of B gave the radical cation D via C. The second deprotonation/anodic oxidation produced F, which was transformed into stable
PDF
Album
Review
Published 16 Oct 2025

Photochemical reduction of acylimidazolium salts

  • Michael Jakob,
  • Nick Bechler,
  • Hassan Abdelwahab,
  • Fabian Weber,
  • Janos Wasternack,
  • Leonardo Kleebauer,
  • Jan P. Götze and
  • Matthew N. Hopkinson

Beilstein J. Org. Chem. 2025, 21, 1973–1983, doi:10.3762/bjoc.21.153

Graphical Abstract
  • photocatalyst radical anion ([PC]·−) and the DIPEA radical cation D (Scheme 1). Single-electron transfer from [PC]·− to the benzoylazolium species 1 would then regenerate the ground-state photocatalyst and afford the Breslow radical anion C, which could in turn react with D in a hydrogen-atom-transfer (HAT
  • electron to compound 3 could explain the formation of the fully reduced species 2. In this case, subsequent mesolysis would generate the benzyl radical cation G, which would deliver 2 following a HAT step with the DIPEA radical cation D. To confirm whether O-benzoylated species is indeed an intermediate in
PDF
Album
Supp Info
Letter
Published 25 Sep 2025

Thermodynamic equilibrium between locally excited and charge transfer states in perylene–phenothiazine dyads

  • Issei Fukunaga,
  • Shunsuke Kobashi,
  • Yuki Nagai,
  • Hiroki Horita,
  • Hiromitsu Maeda and
  • Yoichi Kobayashi

Beilstein J. Org. Chem. 2025, 21, 1577–1586, doi:10.3762/bjoc.21.121

Graphical Abstract
  • anion of the Pe moiety. Additionally, a shoulder signal observed near 500 nm was attributed to the radical cation of the PTZ(TPA) unit. However, although previous studies selectively excited the Pe moiety and attributed the 725 nm band to the LE state of Pe moiety, such an assignment may not be directly
  • attributable to the Pe radical anion and the PTZ(TPA) radical cation appeared at ≈600 and ≈500 nm, respectively (Figure 7). The electron transfer time constant was determined to be 7.6 ps, significantly slower than that of Pe–PTZ(TPA)2 (120 fs or faster), reflecting the effect of the phenyl spacer that
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2025

General method for the synthesis of enaminones via photocatalysis

  • Paula Pérez-Ramos,
  • Raquel G. Soengas and
  • Humberto Rodríguez-Solla

Beilstein J. Org. Chem. 2025, 21, 1535–1543, doi:10.3762/bjoc.21.116

Graphical Abstract
  • oxidative state PC1* that interacts with morpholine (8a) to generate the corresponding aminium radical cation. To gain a better understanding of the process, the formation of the enaminone product 9a was monitored overtime by 1H NMR, which confirmed that the the reaction was complete within 2 h. Furthermore
  • . Simultaneously, acridinium photocatalyst PC1 absorbed energy and transitioned from the ground state to excited state under visible-light irradiation. This excited state PC1* is quenched by the amine, generating the amine radical cation and PC1 radical via a single-electron transfer (SET) process. Then, the C−Br
PDF
Album
Supp Info
Letter
Published 29 Jul 2025

Advances in nitrogen-containing helicenes: synthesis, chiroptical properties, and optoelectronic applications

  • Meng Qiu,
  • Jing Du,
  • Nai-Te Yao,
  • Xin-Yue Wang and
  • Han-Yuan Gong

Beilstein J. Org. Chem. 2025, 21, 1422–1453, doi:10.3762/bjoc.21.106

Graphical Abstract
  • electronic behaviors reminiscent of nitrogen-doped azulenes, featuring strong absorption dissymmetry factors (|gabs|) at 345 nm – 1.2 × 10−2 for compound 20a, 1.0 × 10−2 for 20d, and 1.3 × 10−2 for 20e (Table 5). Notably, the radical cation form of compound 20e (20e•+) exhibits pronounced CD signals
  • BCPL value of 13.2 M−1 cm−1. Notably, compound 21c undergoes reversible redox interconversion to its radical cation 21c•+ and dicationic 21c2+ states via chemical oxidation, enabling controllable switching between antiaromatic and aromatic configurations. These results provide a compelling strategy for
  • | value of 1.6 × 10−3. In addition, both 29a and 29b demonstrate redox activity, undergoing reversible formation of radical anions, dianions, and radical cations. The radical cation 29b•+, in particular, exhibits a broad near-infrared (NIR) absorption band extending to 3000 nm, highlighting its potential
PDF
Album
Review
Published 11 Jul 2025

Recent advances in amidyl radical-mediated photocatalytic direct intermolecular hydrogen atom transfer

  • Hao-Sen Wang,
  • Lin Li,
  • Xin Chen,
  • Jian-Li Wu,
  • Kai Sun,
  • Xiao-Lan Chen,
  • Ling-Bo Qu and
  • Bing Yu

Beilstein J. Org. Chem. 2025, 21, 1306–1323, doi:10.3762/bjoc.21.100

Graphical Abstract
  • it into the byproduct 46 and generating a carbon-centered radical 62. Species 62 is trapped by heteroarene 60, leading to the formation of the intermediate 63. This intermediate 63 undergoes SET and proton transfer with the assistance of O-anion 64 and the Br-5CzBN+• radical cation, delivering the
PDF
Album
Review
Published 27 Jun 2025

Recent advances and future challenges in the bottom-up synthesis of azulene-embedded nanographenes

  • Bartłomiej Pigulski

Beilstein J. Org. Chem. 2025, 21, 1272–1305, doi:10.3762/bjoc.21.99

Graphical Abstract
  • by a naphthalene-to-azulene rearrangement. The alternative radical cation mechanism has a higher energy barrier than the arenium cation-mediated reaction. Notably, only one of the pentagon–heptagon pairs exhibits an azulene-like electronic structure and aromaticity, as confirmed by the analysis of
  • calculated NICS values. Similarly, Liu and co-workers reported the synthesis of two related nanographenes from precursor 38 (Scheme 6) [47]. Oxidation using DDQ/TfOH yielded two PAHs 39 and 40 in 34% and 22% yield, respectively. The authors postulated here formation of azulene moiety through radical cation
  • ]. Notably, PAH 109 forms an air-stable radical cation after oxidation. A similar intramolecular oxidation of two adjacent azulene units was also reported with the use of FeCl3 as an oxidant [73] or in one step during Suzuki coupling between 1,8-dibromonaphthalene and borylated azulene [74]. The ease of
PDF
Album
Review
Published 26 Jun 2025

Recent advances in oxidative radical difunctionalization of N-arylacrylamides enabled by carbon radical reagents

  • Jiangfei Chen,
  • Yi-Lin Qu,
  • Ming Yuan,
  • Xiang-Mei Wu,
  • Heng-Pei Jiang,
  • Ying Fu and
  • Shengrong Guo

Beilstein J. Org. Chem. 2025, 21, 1207–1271, doi:10.3762/bjoc.21.98

Graphical Abstract
  • bromide, and secondary alkyl bromides failed to yield the desired products, suggesting limitations in radical generation efficiency for certain substrates. A plausible mechanism, as shown in Scheme 48, involves the NHC catalyst donating a single electron to the α-bromo substrate, generating an NHC radical
  • cation B and an α-carbon radical A. The α-carbon radical A then undergoes intermolecular radical addition to the acrylamide, forming a new carbon-centered radical intermediate C, which subsequently undergoes intramolecular cyclization to yield the oxindole product 88a via homolytic aromatic substitution
PDF
Album
Review
Published 24 Jun 2025

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
  • O atom of the carboxylate group. For instance, Coote and co-workers (2019) reported electrochemical methylation of cinnamic acid 7 using the TEMPO-Me reagent via reactive radical cation 59 to give the corresponding methyl ester 44 in moderate yield (Scheme 21A) [53]. Wang and co-workers (2019
PDF
Album
Review
Published 28 May 2025

Study of tribenzo[b,d,f]azepine as donor in D–A photocatalysts

  • Katy Medrano-Uribe,
  • Jorge Humbrías-Martín and
  • Luca Dell’Amico

Beilstein J. Org. Chem. 2025, 21, 935–944, doi:10.3762/bjoc.21.76

Graphical Abstract
  • facilitated by reduced photocatalyst (PC) and the interaction of 15 with the radical cation of DIPEA. The best result, again, was attributed to molecule 5a with 60% isolated yield (Table 5, entry 1). In contrast, molecule 5b showed the worst performance with 41% NMR yield (Table 5, entry 2). For compounds 5c
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2025

Recent advances in the electrochemical synthesis of organophosphorus compounds

  • Babak Kaboudin,
  • Milad Behroozi,
  • Sepideh Sadighi and
  • Fatemeh Asgharzadeh

Beilstein J. Org. Chem. 2025, 21, 770–797, doi:10.3762/bjoc.21.61

Graphical Abstract
  • (O)(OR)2 is derived from the compound P(OR)3, not from HP(O)(OR)2. Although the exact role of HP(O)(OR)2 remains unclear, it has been established that its presence is essential for the C–H phosphorylation. In this case, a radical cation intermediate was suggested for this conversion. Heteroaromatic
  • . Some other heteroarenes were also tested, but only quinoxaline was compatible with this system under the standard conditions. A radical pathway was proposed in this reaction. At first, a thiazole radical cation was formed via anodic oxidation, followed by a reaction with phosphine oxides to give a
  • reaction proceeded via anodic indole oxidation, followed by a reaction with trialkyl phosphite to give the corresponding indole phosphonate (Scheme 11). Cyclic voltammetry experiments confirmed that free indole can oxidize at the anode and generate a radical-cation intermediate. Also, no product was
PDF
Album
Review
Published 16 Apr 2025

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • the radical cation iPr2NEt•+ (iPr2NEt/iPr2NEt•+ = +0.72 V vs SCE) and the reduction of O2 by the reduced photocatalyst, forming the superoxide radical anion O2•− (O2/O2•− = −0.57 V vs SCE). This latter can then react with arylboronic acids 59 to give, after hydrolysis, phenol derivatives 60. Other
  • involving π–π-stacking [75]. The resulting radical anion releases NO also yielding the anion 63. Electron transfer to the radical cation of the photocatalyst regenerates it. In this step, the neutral radical 64 is also formed. Hydrogen abstraction (hydrogen atom transfer, HAT) yields compound 65. NO and the
PDF
Album
Review
Published 07 Feb 2025

Oxidation of [3]naphthylenes to cations and dications converts local paratropicity into global diatropicity

  • Abel Cárdenas,
  • Zexin Jin,
  • Yong Ni,
  • Jishan Wu,
  • Yan Xia,
  • Francisco Javier Ramírez and
  • Juan Casado

Beilstein J. Org. Chem. 2025, 21, 277–285, doi:10.3762/bjoc.21.20

Graphical Abstract
  • oxidized species of compounds 1 and 2 are shown in Figure 3. Initial electrochemical oxidation of 1 resulted in the progressive replacement of its absorption bands by three new features, which were assigned to the 1•+ radical cation, namely at 352/369 nm, a multiplet in the 500–600 nm interval, and a broad
  • peak centered at 1173 nm. Further oxidation resulted in a quite silent vis–NIR spectrum characterized by one main peak at 312 nm, which was assigned to the 12+ dication. The spectrum of the first oxidized species of 2, the radical cation 2•+, shows a band at 363 nm, a shoulder at 439 nm, and a broad
  • between the bonds of parent molecules. In our case, they will reveal the transformation of the CC bond skeleton upon oxidation. Figure 6 summarizes the set of k[ν(CC)] values calculated for neutral, radical cation, and dication of m-1 and m-2, as well as those obtained at the same level for individual NAP
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • cation 30. The [Mes-Acr-Ph]• is regenerated to the ground-state acridinium [Mes-Acr-Ph]+ through a single oxidation step on the anode, and the heteroarene radical cation 30 then reacts with the arylalkene 27 to form a benzylic radical intermediate 31. The benzylic radical intermediate 31 is subsequently
  • Figure 11. Initially, the Cu(II) catalyst 50 coordinates with substrate 47 and amine electrophile 48 to generate Cu(II) intermediate 51, which is then oxidized by the iodine radical to form Cu(III) complex 52. Cu(III) complex 52 undergoes electron transfer to produce radical cation intermediate 53
  • . Subsequent intramolecular amine transfer to the radical cation intermediate 53, followed by ligand exchange, yields amination product 49 and Cu(I) species 55. Cu(II) catalyst 50 is regenerated by anodic oxidation, thereby completing the catalytic cycle. In 2019, Nicholls et al. reported a Cu-catalyzed
PDF
Album
Review
Published 16 Jan 2025

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • or transform into a long-lived radical cation by substrate reduction, which are the fundamentals of photoredox catalysis (Figure 13a). Monomeric porphyrins and supramolecular porous frameworks composed of porphyrin building blocks, such as metal-organic frameworks (MOF) and covalent organic
PDF
Album
Review
Published 27 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • group with a less hindered portion is observed. The mechanism revealed the reaction undergoes the homolytic cleavage of the diaryliodonium salt to produce an iodoaryl radical cation, which further reacts with the amine to acquire the corresponding diaryl amines. Moreover, a similar reaction tried with a
PDF
Album
Review
Published 13 Nov 2024

Synthesis of spiroindolenines through a one-pot multistep process mediated by visible light

  • Francesco Gambuti,
  • Jacopo Pizzorno,
  • Chiara Lambruschini,
  • Renata Riva and
  • Lisa Moni

Beilstein J. Org. Chem. 2024, 20, 2722–2731, doi:10.3762/bjoc.20.230

Graphical Abstract
  • Scheme 6. Based on the results reported by Zeitler [28], several mechanisms are involved in the oxidation of N-Ph-THIQ. The most probable involves the photoexcitation of the EDA (Electron Donor-Acceptor) complex promoting an electron transfer from N-Ph-THIQ to BrCCl3 to afford the amine radical cation
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • cation is formed by oxidation of the substrate at the anode. This radical cation is subsequently deprotonated to produce an allyl radical. The allyl radical is further oxidized to form the allyl cation, which is then attacked by the nucleophilic sulfonamide, leading to the formation of the desired C–N
  • , several structurally diverse aromatic acetals have been synthesized. Dehydroabietic and norcholanoic acid derivatives have been effectively modified using the developed protocol. The reaction is reported to involve the oxidation of the benzene core, followed by electron transfer to the radical cation, and
  • protocol for the installation of sulfonamide groups using commercially available SO2 and amines (Scheme 12) [20]. This method is highly appealing for industrial applications and LSF. The proposed mechanism begins with the anodic oxidation of the arene substrate. The resulting radical cation intermediate is
PDF
Album
Review
Published 09 Oct 2024

Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams

  • Valentina Giraldi,
  • Giandomenico Magagnano,
  • Daria Giacomini,
  • Pier Giorgio Cozzi and
  • Andrea Gualandi

Beilstein J. Org. Chem. 2024, 20, 2461–2468, doi:10.3762/bjoc.20.210

Graphical Abstract
  • reactions limit the utility of this approach. Herein, we report an intramolecular photoredox cyclization of alkenes with β-lactams in the presence of an acridinium photocatalyst. The approach uses an intramolecular nucleophilic addition of the β-lactam nitrogen atom to the radical cation photogenerated in
  • functionalization of amides with alkenes under photoredox conditions. Another viable approach for amide functionalization through photoredox catalysis involves the nucleophilic addition, in the presence of base, of an amide to a radical cation obtained by oxidation of an unfunctionalized alkene moiety (Figure 1A
  • functionalization of amides with alkenes under oxidative conditions, the oxidation potential of the alkene plays a pivotal role in the oxidation to a radical cation through photoredox catalysis [26]. Alkenes that are less functionalized possess a higher oxidation potential, necessitating the use of potent
PDF
Album
Supp Info
Full Research Paper
Published 01 Oct 2024

Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments

  • Daria A. Burmistrova,
  • Andrey Galustyan,
  • Nadezhda P. Pomortseva,
  • Kristina D. Pashaeva,
  • Maxim V. Arsenyev,
  • Oleg P. Demidov,
  • Mikhail A. Kiskin,
  • Andrey I. Poddel’sky,
  • Nadezhda T. Berberova and
  • Ivan V. Smolyaninov

Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202

Graphical Abstract
  • in the reaction with a diphenylpicrylhydrazyl (DPPH) radical, ABTS·+ radical cation, CUPRAC test, and inhibition process of superoxide radical anion formation by xanthine oxidase (NBT assay). The presence of a catechol fragment and thioether or thione groups determines the ability to neutralize
  • fragment favors the pronounced antiradical activity. The use of ABTS radical cation to assess the antioxidant capacity of compounds is one of the widely used methods which is based on the transfer of an electron from the studied molecules to the acceptor [67]. The obtained IC50 values for synthesized
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • formation of dimeric side products. Cyclic voltammetry analysis suggested an initial anodic single electron transfer (SET) to radical cation 5, cyclization and deprotonation. Subsequent SET oxidation in solution by 5 led to cation 7. Final deprotonation furnished aromatic cycle 4. In 2022, Zhang et al
  • species to be oxidized, initial SET anodic oxidation of the hydrazone furnishes the highly electrophilic radical cation species D, which undergo nucleophilic addition of the second partner and deprotonation to produce hydrazinyl radical F (route a). Alternatively, if the partner possesses a lower
  • + (E1/2(TAC2+/TAC+) = +1.3 V vs SCE). Subsequent SET between highly oxidizing photoexcited species TAC2+* (E1/2(TAC2+*/TAC+) = +3.3 V vs SCE) and 150 generated distonic species 151 by denitrogenation. After Wagner–Merweein shift, the resulting radical cation 152 would undergo SET reduction from an
PDF
Album
Review
Published 14 Aug 2024

Development of a flow photochemical process for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence: in situ-generated 2-benzopyrylium as photoredox catalyst and reactive intermediate

  • Masahiro Terada,
  • Zen Iwasaki,
  • Ryohei Yazaki,
  • Shigenobu Umemiya and
  • Jun Kikuchi

Beilstein J. Org. Chem. 2024, 20, 1973–1980, doi:10.3762/bjoc.20.173

Graphical Abstract
  • , initiating further radical reactions through the formation of radical cations B. Nucleophilic arylmethyl radicals C, which are generated from radical cations B by desilylation, undergo an addition reaction with 2-benzopyrylium intermediates A, giving rise to the corresponding radical cation. Catalytic cycle
  • II is completed through a SET from D, a reduced form of the photoredox catalyst 2-benzopyrylium intermediates A, to the generated radical cation, affording 1H-isochromene derivatives 3. The photoredox cycle is also completed with the regeneration of cations A through SET from D. The most distinctive
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2024
Other Beilstein-Institut Open Science Activities