This themed issue covers organic thermally activated materials design. The corresponding compounds can be used as components in organic light-emitting diodes (OLEDs), as photocatalysts, as imaging or sensing reagents, or as lasing materials. The focus herein is on the design, synthesis, properties, and use of thermally activated delayed fluorescence (TADF) compounds.
Still open for submission
Graphical Abstract
Figure 1: Chemical structures of 1 and POZ-DBPHZ.
Scheme 1: Synthesis of compound 1.
Figure 2: Steady-state UV–vis absorption (Abs) and photoluminescence (PL) spectra of dilute solutions (c ≈ 10...
Figure 3: Time-resolved PL decay profiles (intensity vs delay time) and spectra of 1 in a), b) Zeonex® and c,...
Figure 4: The characteristics of the OLED devices: a) electroluminescence spectra; b) current density-bias ch...
Figure 5: Schematics of the TADF mechanisms along with NTOs for the relevant electronic states for a) D–A com...
Graphical Abstract
Figure 1: 2-Modified 4,6-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-5-methylpyrimidines.
Scheme 1: Synthesis of 4,6-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-5-methyl-2-substituted pyrimidines 1–6. Re...
Figure 2: HOMO and LUMO spatial distributions of carbazole–pyrimidine TADF compounds.
Figure 3: Absorption (grey lines), fluorescence (black lines) and 10K phosphorescence (red lines) spectra of ...
Figure 4: Fluorescence decay transients of 1 wt % PMMA films of carbazole–pyrimidine TADF compounds in oxygen...